• 제목/요약/키워드: 프린지 증식

Search Result 9, Processing Time 0.023 seconds

Analysis of Stress Distribution of a Curved Beam Using Photoelasticity (광탄성법을 이용한 곡선보 평판의 응력분포 해석)

  • Baek, Tae-Hyun;Kim, Myung-Soo;Kim, Soo-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.3
    • /
    • pp.200-206
    • /
    • 1999
  • This paper describes the stress analysis of a curved beam by using photoelasticity. In order to measure accurate isochromatic fringe orders at certain locations. fringes are doubled and sharpened by digital image processing. After fringe multiplication and sharpening. fringe orders can be read as a quarter order interval (N=0, 1/4, 2/4, 3/4,...). The results obtained from photoelastic experiment are compared with those calculated by using theory. Two results are agreed well even though there are some scatter bands with maximum 8 percent for the results of photoelastic measurements and theoretical calculation. Difference may be occurred due to the slight misalignment of the direction to which axial load is applied in photoelastic experiment. It is confirmed that accurate measurement of stress distribution can be possible by using the techniques of fringe multiplication and sharpening in photoelasticity.

  • PDF

Development of Image Processing Technique for Photoelastic Fringe Analysis (광탄성 프린지해석을 위한 영상처리기법 개발)

  • 백태현;이재춘
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2577-2584
    • /
    • 1994
  • A method of digital image processing thechnique, which can multiply and sharpen isochromatic fringes in photoelasticity on both occasions, is developed. To test the method, photoelastic fringe patterns of a disk compressed by two diametrically opposite cocentrated loads are simulated and these patterns are processed to yield sharpened lines. The method is then aplied to measurement of residual stresses in glass bar. The procedure is proved to be capable of extraction sharpened lines accurately from photoelastic multiplied fringes, and yields good experimental results consistently and precisely.

Analysis of Photoelastic Stress Field Around Inclined Crack Tip by Using Hybrid Technique (하이브리드 기법에 의한 경사균열 팁 주위의 광탄성 응력장 해석)

  • Chen, Lei;Seo, Jin;Lee, Byung-Hee;Kim, Myung-Soo;Baek, Tae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1287-1292
    • /
    • 2010
  • In this paper, a hybrid technique is presented. First, the isochromatic fringe data of a given set of points are calculated by the finite element method and are used as input data in complex variable formulations. Then the numerical model of the specimen with a central inclined crack is transformed from the physical plane to the complex plane by conformal mapping. The stress field is analyzed and the mixed-mode stress intensity factors are calculated for this complex plane. The stress intensity factors are calculated by the finite element method as well as by a theoretical method and compared with each other. In order to conveniently compare these values with each other, both actual and regenerated photoelastic fringe patterns are multiplied by a factor of two and sharpened by digital image processing.

Hybrid Photoelastic Stress Analysis Around a Central Crack Tip in a Tensile Loaded Plate Using Isochromatic Data (등색프린지 데이터를 이용한 인장하중 판재 중앙 균열선단 주위의 하이브리드 광탄성 응력장 해석)

  • Baek, Tae-Hyun;Chen, Lei
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.12
    • /
    • pp.1200-1207
    • /
    • 2007
  • An experimental test is presented for photoelastic stress analysis around a crack tip in tensile loaded plate. The hybrid method coupling photoelastsic fringe inputs calculated by finite element method and complex variable formulations involving conformal mappings and analytical continuity is used to calculate full-field stress around the crack tip in uniaxially loaded, finite width tensile plate. In order to accurately compare calculated fringes with experimental ones, both actual and regenerated photoelastic fringe patterns are two times multiplied and sharpened by digital image processing. Regenerated fringes by hybrid method are quite comparable to actual fringes. The experimental results indicate that Mode I stress intensity factor analyzed by the hybrid method are accurate within three percent compared with ones obtained by empirical equation and finite element analysis.

Hybrid Full-field Stress Analysis around a Circular Hole in a Tensile Loaded Plate using Conformal Mapping and Photoelastic Experiment (등각사상 맵핑 및 광탄성 실험법에 의한 원형구명 주위의 하이브리드 응력장 해석)

  • Baek, Tae-Hyun;Kim, Myung-Soo;Rhee, Ju-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.988-1000
    • /
    • 1999
  • An experimental study is presented for the effect of number of terms of a pewee series type stress function on stress analysis around a hole in tensile loaded plate. The hybrid method coupling photoelastsic data inputs and complex variable formulations involving conformal mappings and analytical continuity is used to calculate tangential stress on the boundary of the hole in uniaxially loaded, finite width tensile plate. In order to measure isochromatic data accurately, actual photoelastic fringe patterns are two times multiplied and sharpened by digital image processing. For qualitative comparison, actual fringes are compared with calculated ones. For quantitative comparison, percentage errors and standard deviations with respect to percentage errors are caculated for all measured points by changing the number of terms of stress function. The experimental results indicate that stress concentration factors analyzed by the hybrid method are accurate within three percent compared with ones obtained by theoretical and finite element analysis.

Accurate Measurement of Residual Stresses of Glass Rods by Photoelasticity (광탄성법에 의한 유리봉 잔류응력의 정밀측정)

  • Baek, Tae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1524-1533
    • /
    • 1996
  • Risidual stress of cylindrical glass rods are measured by photoelasticity to study the variation of stresses with respect to heat treatment temperatures. In order to measure the stresses accurately, fringe sharpening and multiplication techniques are applied to the determination of photoelastic fringe orders. Filon's separationmethod is used to resolve circumferential and redial stress ocmponents from isochromatic fringes which are the same as in-plane maximum shearing stresses. According to the photoelastic measurements, residual stress is increased as the heat treatment temperature of the rods is raised from $560^{\circ}C$ to $650^{\circ}C$ All the circumferential stress components are changed from tensile stresses to compressive ones at approximate $R_m$/$R_o$ = 0.6, where $R_o$/ is outer radius and $R_m$any measured radius. This analysis shows that residual stresses of the glass rods approach zero if the rods are heat-treated near the strain point.

Analysis of Stress Distribution around a Central Crack Tip in a Tensile Plate Using Phase-Shifting Photoelasticity and a Power Series Stress Function (위상이동 광탄성법과 멱급수형 응력함수를 이용한 인장시편 중앙 균열선단 주위 응력장 해석)

  • Baek, Tae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • This paper presents stress distribution around a central crack tip in a tensile plate using phase-shifting photoelasticity and a power series stress function. Isochromatic data along the straight lines far from the crack tip were obtained by phase shifting photoelasticity and were used as input data of the hybrid experimental analysis. By using the complex-type power series stress equations, the photoelastic stress distribution fields in the vicinity of the crack and the mode I stress intensity factor were obtained. With the help of image processing software, accuracy and reliability was enhanced by twice multiplying and sharpening the measured isochromatics. Actual and reconstructed fringes were compared qualitatively. For quantitative comparison, percentage errors and standard deviations of the percentage errors were calculated for all measured input data by varying the number of terms in the stress function. The experimental results agreed with those predicted by finite element analysis and empirical equation within 2 percent error.

Stress Intensity Factor Measurement of Inclined Crack in Tensile Plates by Use of Photoelasticity (광탄성법을 이용한 인장판의 경사균열 응력확대계수 측정)

  • Baek, Tae-Hyun;Lee, Chun-Tae;Kim, Young-Chul
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.5 no.2
    • /
    • pp.215-222
    • /
    • 2015
  • This paper presents the measurement of stress intensity factors of inclined cracks by use of photoelasticity. The distributions of isochromatics near a crack tip of the specimen loaded by uniaxially tensile load are used for analysis. Accuracy and reliability is enhanced by twice multiplying and sharpening the measured isochromatics using digital image processing. Photoelastic results are compared with those obtained by finite element method. Good agreement between them shows that the photoelastic analysis is reliable.