• Title/Summary/Keyword: 프리즘

Search Result 452, Processing Time 0.025 seconds

Solubility of Nifedipine in Mixed Solvents and Antisolvent Crystallization (혼합용매에 대한 니페디핀의 용해도와 반용매 결정화)

  • Kang, Mi-Young;Yeo, Sang-Do
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.92-97
    • /
    • 2020
  • In this study, the solubilities of a pharmaceutical compound, nifedipine, in three mixed solvents were determined. In addition, the nifedipine, that was dissolved in solvents (acetone, DMF, methylene chloride), was recrystallized using antisolvents (water, hexane, carbon dioxide) The external shape, size, and melting point of the crystallized nifedipine were measured. As the mixed solvents, acetone+water, DMF+water, and methylene chloride+hexane were used, and the solubility of nifedipine decreased with increasing antisolvent concentrations in the mixtures. In case of acetone+water, the solubility maximum was observed due to the density anomaly of the mixture, and this phenomenon was not observed in other systems. The crystallized nifedipine particles exhibited the bladed, equant, and prismatic habits, and the particles size was significantly reduced compared to the raw material. The average particle size of raw nifedipine was 337 ㎛, and the size of crystallized particles was in the range of 11.6~69.8 ㎛. All the crystallized nifedipine particles had the same thermal behavior and this result was not influenced by the change of solvent and antisolvent.

Optical System Design for Projection TV using Micro Display (마이크로 디스플레이를 이용한 프로젝션 TV용 광학계 설계)

  • Park, Sung-Chan;Lee, Jung-Yul
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.3
    • /
    • pp.240-247
    • /
    • 2006
  • This paper discusses the optical system design for projection TV using LCOS type micro display, which provides the high resolution, slim depth, and a large screen of more than 60 inches. We analyzed the relationship between the illumination system, projection lens, color separation & recombination system, and micro display. From this quantitative analysis, the starting data for the optimum light engine was defined, and all optical systems were designed by an optimization process. Three RGB panels were proposed for a high luminence system, and the four prisms symmetrically located make equal optical path lengths for the RGB rays. This color separation & recombination system enables the a compact illumination system. Also, in order to the slim light engine with high resolution, the folded projection lens system was designed by inserting a mirror between projection lenses.

Occurrence, Type and Ultrastructure of Calcium Oxalate Crystals in Panax ginseng (인삼(Panax ginseng)에 존재하는 Calcium Oxalate 결정체의 분포, 유형 및 미세구조)

  • Lee, Sang-Wook;Kwon, Woo-Saeng;Jeong, Byung-Kap
    • Journal of Ginseng Research
    • /
    • v.26 no.4
    • /
    • pp.213-218
    • /
    • 2002
  • Crystalline calcium oxalate occur throughout near)y all plants species in five major forms; styloids, druses, raphids, prisms and sands. These crystals are known to be distributed in specific tissue such as cortex, xylem, phloem, cambium and epidermis. This research was undertaken to identify the occurrence, type, location and ultrastructure of druse crystals in Panax ginseng. In situ visualization, conventional light microscopy, histochemistry and scanning electron microscopy were applied for these purposes. Druse crystals in ginseng were identified as calcium oxalate by silver nitraterubeanic acid histochemistry. Calcium oxalate crystals are observed in nearly all plant organs such as leaf, petiole, peduncle, stem, rhizome, tap root and lateral root except fine root. Most frequent observation of crystals in the leaf and rhizomes were noticed. Three different types of calcium of oxalate druse crystals were identified by scanning electron microscopy.

Rationalist Approach Towards New Forms : White Prisms (새로운 형태, 백색 프리즘에 대한 이성적 접근에 관한 연구)

  • Chung, Jin Soo
    • Journal of architectural history
    • /
    • v.3 no.1
    • /
    • pp.161-172
    • /
    • 1994
  • This is part of a study on the origin of modernist forms and settings. Forms in Modern Architecture are totally new as though they seemed to be originated from some remote culture. Archaeological studies and Laugier's primitivist attitude to the classical architecture provided a way leading, in the end, to pure structures and abstract forms. An application of the classical elements was combined with the ultimate image of nobility, simplicity and rationality. What the seventeenth and eighteenth century theorists realized in the ruines of the classical structures were not the ones with their original organic vitality but the deteriorated, naked and abstracted ones. The essence of the classical structures has been the one of the main references of the modern white architecture. Ration and Nature were the quintessential terms in the design process of the Enlightenment architects of the late eighteenth and nineteenth centuries as they were in the twentieth century architecture. Pure geometric and symbolic forms were new inventions for the new revolutionary age after the development of architectural Styles, successive until Baroque and Roccoco, ceased to go on to the next phase. Many of their buildings appeared so modem in character, for they were omitted all but the essential structure and decoration. Other sides of rationality in the pre-modern age were evolved in terms of the paradigmatic research and the logic in structure. Durand developed a systematic typological approach to the forms. Geometry was the basis of his designs and his illustrations resembled endless simple geometrical problems. One of the other rational approaches was mainly developed by Viollet-le-Duc. To him, Gothic architecture was the model in which each members functioned actively and exerted counterpressure and the Middle Ages invented new fantastic forms. The several ways of rational approaches in architecture were led to the 'tabula rasa' planning in modern architecture. Nature was remained untouched and not deformed as Ledoux's houses in the $H{\hat{o}}tel$ de $Th{\acute{e}}lusson$ were setted on informal gardens. It is part of the modem image that Nature flows or interpenetrates through the white prisms of the strictest classical purity and machines.

  • PDF

Micro-patterning of light guide panel in a LCD-BLU by using on silicon crystals (실리콘 결정면을 이용한 LCD-BLU용 도광판의 미세산란구조 형성)

  • lChoi Kau;Lee, Joon-Seob;Song, Seok-Ho;Oh Cha-Hwan;Kim, Pill-Soo
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.2
    • /
    • pp.113-120
    • /
    • 2005
  • Luminous efficiency and uniformity in a LCD-BLU are mainly determined by fine scattering patterns formed on the light guide panel. We propose a novel fabrication method of 3-dimensional scattered patterns based on anisotropic etching of silicon wafers. Micro-pyramid patterns with 70.5 degree apex-angle and micro-prism patterns with 109.4 degree apex-angle can be self-constructed by the wet, anisotropic etching of (100) and (110) silicon wafers, respectively, and those patterns are easily duplicated by the PDMS replica process. Experimental results on spatial and angular distributions of irradiation from the light guide panel with the micro-pyramid patterns were very consistent with the calculation results. Surface roughness of the silicon-based micro-patterns is free from any artificial defects since the micro-patterns are inherently formed with silicon crystal surfaces. Therefore, we expect that the silicon based micro-patterning process makes it possible to fabricate perfect 3-dimensional micro-structures with crystal surface and apex angles, which may guarantee mass-reproduction of the light guide panels in LCD-BLU.

A femtosecond Cr:LiSAF laser pumped by semiconductor lasers (반도체 레이저 여기 펨토초 Cr:LiSAF 레이저)

  • 박종대
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.5
    • /
    • pp.360-364
    • /
    • 2000
  • We demonstrate self-starting passIve mode locking of a Cr:LiSAF laser, using a SCIDlconduclor Saturable Absorber Mirror (SESAM), Two high-power red semiconductor lasers (Coherent S-67-500C-100-H) of wavelength 667 nm and maximum power of 500 mW were used as pump lasers, The cavity has 10 cm radius-ai-curvature folding minors, two SF 10 prisms, a 99% reflectivity output coupler and a SESAM at dIe focus of a 10 cm radIus-at-curvature mirror. We used the laser crystal in BrewsterBrewster shape with 1 5% $Cr^{+3}$ ion concentration and the length of 6 mm, An X-shaped resonator was used to compensate the astigmatism induced by tile crystal. The structure of the SESAM cOllSists of 30 pmr of $AlAs/Al_{0.15}Ga_{0.85}As$ layer, wi1l1 a 10 nm GaAs quantum well situated in the topmost layer Output spectra were centeled at 833 nm, with 4 nm spectral bandwidth and pulse width was measured to be 220 fs, Output power of 3 mW is obtained at a pump power of 800 mW. 00 mW.

  • PDF

A fiber optic surface plasmon resonance (SPR) sensorusing cyclic olefin copolymer (COC) polymer prism (Cyclic olefin copolymer (COC) 폴리머 프리즘을 사용한 광섬유 기반 표면 플라즈몬 공명 (SPR) 바이오 센서)

  • Yun, Sung-Sik;Lee, Soo-Hyun;Ahn, Chong-H.;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.369-374
    • /
    • 2008
  • A novel fiber optic surface plasmon resonance (SPR) sensor using cyclic olefin copolymer (COC) prism with the spectral modulation is presented. The SPR sensor chip is fabricated using the SU-8 photolithography, Ni-electroplating and COC injection molding process. The sidewall of the COC prism is partially deposited with Au/Cr (45/2.nm thickness) by e-beam evaporator, and the thermal bonding process is conducted for micro fluidic channels and optical fibers alignment. The SPR spectrum for a phosphate buffered saline (0.1.M PBS, pH.7.2) solution shows a distinctive dip at 1300.nm wavelength, which shifts toward longer wavelength with respect to the bovine serum albumin (BSA)concentrations. The sensitivity of the wavelength shift is $1.16\;nm{\cdot}{\mu}g^{-1}{\cdot}{\mu}l^{-1}$. From the wavelength of SPR dips, the refractive indices (RI) of the BSA solutions can be theoretically calculated using Kretchmann configuration, and the change rate of the RI was found to be $2.3{\times}10^{-5}RI{\cdot}{\mu}g^{-1}{\cdot}l^{-1}$. The realized fiber optic SPR sensor with a COC prism has clearly shown the feasibility of a new disposable, low cost and miniaturized SPR biosensor for biochemical molecular analyses.

Gravimetric Terrain Correction using Triangular Element Method (삼각요소법을 이용한 중력자료의 지형보정)

  • Rim, Hyoung-Rea;Lee, Heui-Soon;Park, Young-Sue;Lim, Mu-Taek;Jung, Hyun-Key
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.2
    • /
    • pp.169-174
    • /
    • 2010
  • We developed a precise terrain correction program using triangular element method (TEM) for microgravity data processing. TEM calculates gravity attraction of arbitrary polyhedra whose surface is patched by triangles. We showed that TEM can calculate more precise terrain effect than conventional rectangular prism method. We tested the accuracy of TEM on the cone model which has analytic solution. Also, we tested the accuracy of TEM on the slope model, this results showed that there are big differences calculated by TEM and rectangular prsim method (RPM) on slope model. The developed terrain correction program was applied on the gravity data on the southern area near sea shore of Korean peninsula, calculated terrain effect very precisely.

A Study on the Supply obligations allotment rate of New Renewable Energy in Indoor Gymnasiums with the Application of a Daylighting System (집광채광시스템을 적용한 실내체육관의 신재생에너지 공급의무 분담률에 관한 연구)

  • Park, Yun-Ha;Lee, Yong-Ho;Cho, Young-Hum;Hwang, Jung-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.3
    • /
    • pp.27-39
    • /
    • 2015
  • Under the goal of analyzing the compulsory supply share of new renewable energy according to the application of a daylighting system to indoor gymnasiums, this study conducted analysis of energy consumption and operation schedule at three indoor gymnasiums in the nation through a survey. The investigator did an Energy Plus simulation on Building A based on the analysis results and analyzed the supply share of new renewable energy in the saving effects of lighting energy according to the application of a daylighting system. As a result, When 92 prism daylighting system were installed in the upper ceiling of a stadium, they were able to meet the criteria for the minimum illumination for official games(Min : 600㏓) and optimum illumination for general games and recreations, thus saving lighting energy during the daytime(09:00~17:00). The resulting saving effects of lighting energy amounted to 44.4% for official games, 57.6% for general games, and 66.7% for recreations. In addition, the daylighting systems had a compulsory supply share of new renewable energy at 2.04% for official games, 2.75% for general games, and 2.62% for recreations, recording an average compulsory supply share of 2.5%.

The design of microscopic system using zoom structure with a fixed magnification and the independency on the variation of object distance (줌 구조를 이용하여 물체거리가 변해도 상면과 배율이 고정되는 현미경 광학계의 설계)

  • 류재명;조재흥;임천석;정진호;전영세;이강배
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.6
    • /
    • pp.613-622
    • /
    • 2003
  • The multi-configurative microscopic system for inspecting the wire-bonding of reed frame is designed. Rays refracted by objective lens group which is composed of common lens group of x2 and x6 are splitted by beam-splitter, and Rays through the central region and the boundary region of the object imaged at x2 and x6 through imaging lens groups, respectively. The depth of wire structure on the reed frame has about $\pm$3 mm, in order to observe by uniform magnification without the dependency on the variation of objective distance generated by the depth of wire structure on the reed frame, imaging lens groups should be moved on nonlinear locus like mechanically compensated zoom lenses. The nonlinear equations for zoom locus are derived by using the Gaussian bracket. Refraction powers and positions of each groups are numerically determined by solving the equations, and initial design data for each groups is obtained by using Seidel third order aberration theory. The optimization technique is finally utilized to obtain this microscopic system.