• Title/Summary/Keyword: 프리웨팅

Search Result 5, Processing Time 0.014 seconds

Evaluation on Performance of Repair Mortar Used for Pre-wetting Spray Method (프리웨팅 스프레이 공법용 모르타르의 성능평가)

  • Nam, Yong-Hyuk;Chung, Young-Jun;Jang, Suk-Hwan;An, Young-Ki;Kim, Sung Chil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.235-242
    • /
    • 2005
  • This study is on the evaluation of performance of polymer cement mortar which is used for pre-wetting spray method. Pre-wetting spray method is an epoch-making method to repair concrete structures damaged, which is added a small quantity water preciously to dry mortar to reduce dust and rebound and spray mortar mixed with fixed quantity water at nozzle before spray. The result showed that physical performance such like compressive, flexural and adhesive strength of polymer cement mortar, TS 100 used for pre-wetting spray method was superior to other repair mortar. Also durable performance such as resistance on permeability of chloride ion, carbonation, chemical and freezing-thawing was excellent.

Hydration Properties of High-strength Cementitious Composites Incorporating Waste Glass Beads (폐유리발포비드를 혼입한 고강도 시멘트 복합체의 수화 특성)

  • Pyeon, Su-Jeong;Kim, Gyu-Yong;Lee, Sang-Soo;Nam, Jeong-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.74-79
    • /
    • 2022
  • In this study, the effect of a sudden decrease in internal humidity and a decrease in hydration level due to the tight internal structure of high-strength concrete and cement composites was investigated. To verify the change in the internal Si hydration, waste glass foam beads were used as a lightweight aggregate, and the internal unreacted hydrate reduction and hydrate formation tendency were identified over the mid- to long-term. Waste glass foam beads were mixed with 5, 10, and 20 %, and were used by pre-wetting. As the mixing rate of the waste glass foamed beads increased, the strength showed a tendency to decrease. In addition, when the mixing amount of pre-wetted waste glass foam beads increases inside through XRD analysis, TGA analysis, and Si NMR analysis, it is judged that the hydration degree of internal Si is different because moisture is supplied to the paste.

The Fluidity and Compressive Strength Properties of Lightweight Mortar Using Recycling Water for Pre-wetting of Artificial Lightweight Aggregate (인공경량골재 Pre-wetting수로 회수수를 적용한 경량모르타르의 유동성 및 압축강도 특성)

  • Oh, Tae-Gue;Bae, sung-ho;Lee, dong-joo;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.153-154
    • /
    • 2019
  • In this study, the fluidity and compressive strength of lightweight mortar using recycling water for pre-wetting of artificial lightweight aggregate were compared and analyzed to maximize the utilization of the recycling water, which is a by-product of the Ready-Mixed Concrete industry. For this purpose, the pre-wetting water was replaced with recycling water at the ratio of 0, 2.5, 5, 7.5 and 10%.

  • PDF

Water absorption characteristics of artificial lightweight aggregates preparedby pre-wetting (프리웨팅된 인공경량골재의 흡수 특성)

  • Kim, Yoo-Taek;Jang, Chang-Sub;Ryu, Yug-Wang
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.2
    • /
    • pp.82-86
    • /
    • 2011
  • Lightweight aggregate which is composed of sintered polycrystalline materials usually has a certain portion of pores inside of it. Because of such a structural characteristics, it tends to that movement of water in aggregate shows an abnormal behavior against the change of outside environment. In general, water movement behavior is controlled by porosity, distribution of pore size; however, dense surface layer will also affect water movement behavior in case of artificially sintered aggregates. Factors affecting water movement behavior in the aggregate are pore distribution, pore shape, pre-wetting method, etc. In this study, absorption characteristics of aggregate under the pressure and absorption rate according to water dipping time are analyzed for the basis of pressure pumping of lightweight concrete. Two kinds of aggregates were used for the test: one is made by 'L' company in Germany and the other is of our own made at the pilot plant in Kyonggi University. Absorption rate of aggregate is measured according to water dipping time, vacuum pressure, and quenching condition. Absorption rate of aggregate with $300^{\circ}C$ quenching is higher than that of aggregate with 24 hr water dipping. Generally the more vacuum the higher water absorption rate. Water absorption rate of 'L' aggregate under -300 mmHg is 54 % higher than that of aggregate with 24 hr water dipping; however, only 2 % increase in water absorption was measured for the K622 and K73 which were of our own.

The Study on the Physical and Strength Properties of Lightweight Concrete by Replacement Ratio of Artificial Lightweight Aggregate (인공경량골재 혼합비율에 따른 경량 콘크리트의 물성 및 강도특성에 관한 연구)

  • Choi, Se-Jin;Kim, Do-Bin;Lee, Kyung-Su;Kim, Young-Uk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.4
    • /
    • pp.313-322
    • /
    • 2019
  • This study is to compare and analyze the physical and strength properties of lightweight concrete using domestic lightweight aggregate by replacement ratio of artificial lightweight fine and coarse aggregate after considering low cement mixture and pre-wetting time. The slump, unit weight, compressive strength and split tensile strength of lightweight concrete with domestic lightweight aggregate were measured. As test results, the slump of lightweight concrete by replacement ratio of lightweight fine aggregate increased as the replacement ratio of lightweight fine aggregate increased. The unit weight of lightweight concrete using 100% of lightweight fine aggregate was about 10.4% lower than that of the lightweight concrete with natural sand. In addition, the unit weight of lightweight concrete by replacement ratio of lightweight coarse aggregate increased with the increase of the ratio of LWG10(5~10mm). The compressive strength of lightweight concrete with lightweight fine and coarse aggregate increased as the replacement ratio of lightweight fine aggregate increased. The compressive strength of lightweight concrete with natural sand and LWG10 was 30 to 31MPa regardless of the replacement ratio of the lightweight coarse aggregate after 7 days.