• Title/Summary/Keyword: 프로토콜 성능

Search Result 2,787, Processing Time 0.03 seconds

Implementation of CoAP/6LoWPAN over BLE Networks for IoT Services (BLE 네트워크 상에서 사물인터넷 서비스 제공을 위한 CoAP과 6LoWPAN 구현)

  • Kim, Cheol-Min;Kang, Hyung-Woo;Choi, Sang-Il;Koh, Seok-Joo
    • Journal of Broadcast Engineering
    • /
    • v.21 no.3
    • /
    • pp.298-306
    • /
    • 2016
  • With the advent of Internet of Things (IoT) technology that allows the communications between things and devices over the Internet, a lot of researches on the IoT services, such as smart home or healthcare, have been progressed. In the existing machine-to-machine (M2M) communications, however, since the underlying link-layer technologies, such as Bluetooth or ZigBee, do not use the Internet Protocol (IP) communication, those technologies are not suitable to provide the IoT services. Accordingly, this paper discusses how to provide the Internet services in the M2M communication, and propose an implementation of the Constrained Application Protocol (CoAP) over 6LoWPAN for providing IoT services in the BLE networks. Based on the implementation, we compared the performance between HTTP and CoAP for IoT communications. From the experimental results, we can see that the CoAP protocol gives better performance than the HTTP protocol with two times higher throughput, 21% faster transmission time, and 22% smaller amount of generated packets.

An Adaptive Polling Algorithm for IEEE 802.15.6 MAC Protocols (IEEE 802.15.6 맥 프로토콜을 위한 적응형 폴링 알고리즘 연구)

  • Jeong, Hong-Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.5
    • /
    • pp.587-594
    • /
    • 2012
  • IEEE 802.15.6 standard technology is proposed for low-power wireless communication in, on and around body, where vital signs such as pulse, blood pressure, ECG, and EEG signals are transmitted as a type of data packet. Especially, these vital signs should be delivered in real time, so that the latency from slave node to hub node can be one of the pivotal performance requirements. However, in the case of IEEE 802.15.6 technology data retransmission caused by transmission failure can be done in the next superframe. In order to overcome this limitation, we propose an adaptive polling algorithm for IEEE 802.15.6 technology. The proposing algorithm makes the hub to look for an appropriate time period in order to make data retransmission within the superframe. Through the performance evaluation, the proposing algorithm achieves a 61% and a 73% latency reduction compared to those of IEEE 802.15.6 technology in the environment of 70% traffic offered load with 10ms and 100ms superframe period. In addition, the proposing algorithm prevents bursty traffic transmission condition caused by mixing retransmission traffic with the traffic reserved for transmission. Through the proposing adaptive polling algorithm, it will be possible to transmit time-sensitive vital signs without severe traffic delay.

LFH: Low-Cost and Fast Handoff Scheme in Proxy Mobile IPv6 Networks with Multicasting Support (프록시 모바일 IPv6 네트워크에서 멀티캐스팅을 지원하는 저비용의 빠른 이동성관리 기법)

  • Kim, Eunhwa;Jeong, Jongpil
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.6
    • /
    • pp.265-278
    • /
    • 2013
  • With the recent advancements in various wireless communication technologies, the importance of mobile multicasting is coming to the fore, in an effort to use network resources more efficiently. In the past, when various mobile IP-based multicast techniques were proposed, the focus was put on the costs needed for network delivery for providing multicast services, as well as on minimizing the multicast handover delay. For techniques using MIPv6 (Mobile IPv6), a host-based mobility management protocol, however, it is fundamentally difficult to resolve the problems of handover delay and tunnel convergence. To resolve these problems, a network-based mobility management protocol called PMIPv6 (Proxy Mobile IPv6) was standardized. Although performance is improved in PMIPv6 over MIPv6, it still suffers from the problems of handover delay and tunnel convergence. In this paper, to overcome these limitations, a technique called LFH (Low-cost and Fast Handoff) is proposed for fast and low-cost mobility management with multicasting support in PMIPv6 networks. To reduce the interactions between the complex multicast routing protocol and the multicast messages, a simplified proxy method called MLD (Multicast Listener Discovery) is implemented and modified. Furthermore, a TCR (Tunnel Combination and Reconstruction) algorithm was used in the multicast handover procedure within the LMA (Local Mobility Anchor) domain, as well as in the multicast handover procedure between domains, in order to overcome the problem of tunnel convergence. As a result, it was found that LFH has reduced multicast delay compared to other types of multicast techniques, and that it requires lower costs as well.

Improvement of Unicast Traffic Performance in High-availability Seamless Redundancy (HSR) Using Port Locking (PL) Algorithm (Port Locking (PL) 알고리즘을 이용한 HSR (High-availability Seamless Redundancy)의 유니캐스트 트래픽 성능개선)

  • Abdulsam, Ibraheem Read;Kim, Se Mog;Choi, Young Yun;Rhee, Jong Myung
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.1
    • /
    • pp.51-56
    • /
    • 2014
  • High-availability seamless redundancy (HSR) is a protocol for fault-tolerant Ethernet (FTE) networks. It provides two frame copies and each copy is forwarded on a separate physical path, which provides zero fail-over time. Therefore, the HSR is becoming a potential candidate for various real-time FTE applications. However, the generation and circulation of unnecessary frames due to the duplication of every sending frame is inherent drawback of HSR. Such drawback degrades the performance of the network and may deplete its resources. In this paper, we present a new algorithm called port locking (PL) based on the media access control (MAC) address to solve the abovementioned problem in popular connected-rings network. Our approach makes the network gradually learn the locations of the source and the destination nodes without relying on network control frames. It then prunes all the rings that do not contain the destination node by locking corresponding rings' entrance ports. With the PL algorithm, the traffic can be significantly reduced and therefore the network performance will be greatly enhanced specially in a large scale connected-rings network. Analytical results are provided to validate the PL algorithm.

Layer 2 Routing with Multi-Spanning Tree Per a Node (노드 당 다중 스패닝 트리를 이용한 2계층 라우팅)

  • Suh, Chang-Jin;Shin, Ji-Soo;Kim, Kyung-Mi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9B
    • /
    • pp.751-759
    • /
    • 2008
  • Carrier Ethernet backbone network integrates distributed layer-2 based metro networks. In this networks, Multiple Spanning Tree Protocol (MSTP) has been uscd as a main routing protocol that allows multiple spanning trees in a network. A better routing protocol called IEEE802.1aq - Shortest Path Bridging (SPB) is recently proposed, that generates the shortest spanning tree per a destination node. As SPB provides a routing path per a destination node, there is no way to adapt network traffic at normal condition. If we are free from the principle of "a spanning tree per a destination node", we can achieve adaptive routing. Based on this philosophy, we propose a new spanning tree based protocol - Edge Node Divided Spanning Tree (ENDIST). ENDIST divides an edge node into sub-nodes as many as connecting links from the node and each sub-node generates a single shortest path tree based on SPB. Depending on network or nodal status, ENDIST chooses a better routing path by flow-basis. This added traffic engineering ability contributes to enhanced throughput and reduced delay in backbone networks. The simulation informs us that ENDIST's throughput under heavy load performs about 3.4-5.8 and 1.5-2.0 times compared with STP's and SPB's one respectively. Also, we verified that ENDIST's throughput corresponds to the theoretical upper bound at half of cases we investigated. This means that the proposed ENDIST is a dramatically enhanced and the close-to-perfect spanning tree based routing schemes.

Performance Analysis of Peer Aware Communications with CSMA/CA Based on Overhearing (Overhearing을 적용한 CSMA/CA 기반 대상인식통신 성능 분석)

  • Lee, Jewon;Ahn, Jae Min;Lee, Keunhyung;Park, Tae-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.5
    • /
    • pp.251-259
    • /
    • 2014
  • In this paper, we propose Low Energy Service Discovery (LESD) protocol for common discovery mode of IEEE 802.15.8 Peer Aware Communications (PAC). In order to minimize power consumption, Basic Repetition Block (BRB) is defined. Device is able to select operating mode and synchronize other devices through it. Proposed MAC procedure is Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) based on overhearing technique. Even if device has not been received response signal since transmitted request signal, it is able to discover other devices of same group through the overhearing technique. IEEE 802.15.8 PAC has required that performances of common discovery mode are presented about discovered devices during the simulation time, discovery latency and average power consumption. By considering the number of devices per group and channel environment, two scenarios are evaluated through system level simulation and the simulation results of proposed scheme are compared with CSMA/CA in same simulation conditions. As a result, proposed scheme is able to get high energy efficiency of devices as well as increase the number of discovered devices during simulation time when the longer the number of devices is distributed over a limited area.

A Mesh Router Placement Scheme for Minimizing Interference in Indoor Wireless Mesh Networks (실내 무선 메쉬 네트워크에서의 간섭 최소화를 위한 메쉬 라우터 배치 기법)

  • Lee, Sang-Hwan
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.4
    • /
    • pp.421-426
    • /
    • 2010
  • Due to the ease of deployment and the extended coverage, wireless mesh networks (WMNs) are gaining popularity and research focus. For example, the routing protocols that enhance the throughput on the WMNs and the link quality measurement schemes are among the popular research topics. However, most of these works assume that the locations of the mesh routers are predetermined. Since the operators in an Indoor mesh network can determine the locations of the mesh routers by themselves, it is essential to the WMN performance for the mesh routers to be initially placed by considering the performance issues. In this paper, we propose a mesh router placement scheme based on genetic algorithms by considering the characteristics of WMNs such as interference and topology. There have been many related works that solve similar problems such as base station placement in cellular networks and gateway node selection in WMNs. However, none of them actually considers the interference to the mesh clients from non-associated mesh routers in determining the locations of the mesh routers. By simulations, we show that the proposed scheme improves the performance by 30-40% compared to the random selection scheme.

Adaptive Collision Resolution Algorithm for Improving Delay of Services in B-WLL System (B-WLL 시스템에서 서비스 지연 향상을 위한 충돌 해소 알고리즘)

  • Ahn, Kye-Hyun;Park, Byoung-Joo;Baek, Seung-Kwon;Kim, Eung-Bae;Kim, Young-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.1B
    • /
    • pp.42-48
    • /
    • 2002
  • In broadband wireless networks, the effective meeting of the QoS guarantees may strongly depend on the Contention Resolution Algorithm used in the uplink contention period. The time it takes a station to transmit a successful request to the base station, or request delay, must be kept low even during periods of high contention. If a request suffers many collisions, it cannot rely on the preemptive scheduler to receive low access delays. However, the conventional collision resolution algorithm has a problem that all collided stations are treated equally regardless of their delay from previous contention periods. Some requests may have very long request delay caused by continuous collisions. In this paper, we propose an adaptive collision resolution algorithm for fast random access in broadband wireless networks. The design goal is to provide quick access to the request with a high number of collisions. To do this, the proposed algorithm separates the whole contention region into multiple sub regions and permits access through each sub region only to the requests with equal number of collisions. The sub region is adaptively created according to the feedback information of previous random access. By simulation, the proposed algorithm can improve the performance in terms of throughput, random delay and complementary distribution of random delay by its ability to isolate higher priorities from lower ones. We can notice the algorithm provides efficiency and random access delay in random access environment.

A Window-Based Permit Distribution Scheme to Support Multi-Class Traffic in ATM Passive Optical Networks (ATM 기반 광 가입자망에서 멀티클래스 트래픽의 효율적인 전송을 위한 윈도우 기반 허락 분배 기법)

  • Lee, Ho-Suk;Eun, Ji-Suk;No, Seon-Sik;Kim, Yeong-Cheon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.1
    • /
    • pp.12-22
    • /
    • 2000
  • This paper presents the window-based permit distribution scheme for efficient medium access control to support multiclass traffic in APON(ATM over passive optical network). The proposed MAC protocol considers the characteristics of QoS(Quality of Service) for various traffic classes. A periodic RAU(request access unit) in upstream direction, includes dedicative request fields for each traffic category within the request slot. The transmission of upstream cell is permitted by the proposed window-based spacing scheme which distributes the requested traffic into several segments in the unit of one spacing window. The delay sensitive traffic source such as CBR or VBR with the stringent requirements on CDV and delay, is allocated prior to any other class. In order to reduce the CDV, so that the permit arrival rate close to the cell arrival rate, Running-Window algorithm is applied to permit distribution processing for these classes. The ABR traffic, which has not-strict CDV or delay criteria, is allocated flexibly to the residual bandwidth in FIFO manner. UBR traffic is allocated with the lowest priority for the remaining capacity. The performance of proposed protocol is evaluated in terms of transfer delay and 1-point CDV according to various offered load. The simulation results show that our protocol has the prominent improvement on CDV and delay performance with compared to the previous protocol.

  • PDF

Design and Implementation of ISO/IEEE 11073 DIM Transmission Structure Based on oneM2M for IoT Healthcare Service (사물인터넷 헬스케어 서비스를 위한 oneM2M기반 ISO/IEEE 11073 DIM 전송 구조 설계 및 구현)

  • Kim, Hyun Su;Chun, Seung Man;Chung, Yun Seok;Park, Jong Tae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.4
    • /
    • pp.3-11
    • /
    • 2016
  • In the environment of Internet of Things (IoT), IoT devices are limited by physical components such as power supply and memory, and also limited to their network performance in bandwidth, wireless channel, throughput, payload, etc. Despite these limitations, resources of IoT devices are shared with other IoT devices. Especially, remote management of the information of devices and patients are very important for the IoT healthcare service, moreover, providing the interoperability between the healthcare device and healthcare platform is essential. To meet these requirements, format of the message and the expressions for the data information and data transmission need to comply with suitable international standards for the IoT environment. However, the ISO/IEEE 11073 PHD (Personal Healthcare Device) standards, the existing international standards for the transmission of health informatics, does not consider the IoT environment, and therefore it is difficult to be applied for the IoT healthcare service. For this matter, we have designed and implemented the IoT healthcare system by applying the oneM2M, standards for the Internet of Things, and ISO/IEEE 11073 DIM (Domain Information Model), standards for the transmission of health informatics. For the implementation, the OM2M platform, which is based on the oneM2M standards, has been used. To evaluate the efficiency of transfer syntaxes between the healthcare device and OM2M platform, we have implemented comparative performance evaluation between HTTP and CoAP, and also between XML and JSON by comparing the packet size and number of packets in one transaction.