• Title/Summary/Keyword: 프로세스 제어 모델

Search Result 122, Processing Time 0.02 seconds

Designing an Agricultural Data Sharing Platform for Digital Agriculture Data Utilization and Service Delivery (디지털 농업 데이터 활용 및 서비스 제공을 위한 농산업 데이터 공유 플랫폼 설계)

  • Seung-Jae Kim;Meong-Hun Lee;Jin-Gwang Koh
    • The Journal of Bigdata
    • /
    • v.8 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • This paper presents the design process of an agricultural data sharing platform intended to address major challenges faced by the domestic agricultural industry. The platform was designed with a user interface that prioritizes user requirements for ease of use and offers various analysis techniques to provide growth prediction for field environment, growth, management, and control data. Additionally, the platform supports File to DB and DB to DB linkage methods to ensure seamless linkage between the platform and farmhouses. The UI design process utilized HTML/CSS-based languages, JavaScript, and React to provide a comprehensive user experience from platform login to data upload, analysis, and detailed inquiry visualization. The study is expected to contribute to the development of Korean smart farm models and provide reliable data sets to agricultural industry sites and researchers.

A Study of Monitoring and Operation for PEM Water Electrolysis and PEM Fuel Cell Through the Convergence of IoT in Smart Energy Campus Microgrid (스마트에너지캠퍼스 마이크로그리드에서 사물인터넷 융합 PEM 전기분해와 PEM 연료전지 모니터링 및 운영 연구)

  • Chang, Hui Il;Thapa, Prakash
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.6
    • /
    • pp.13-21
    • /
    • 2016
  • In this paper we are trying to explain the effect of temperature on polymer membrane exchange water electrolysis (PEMWE) and polymer membrane exchange fuel cell (PEMFC) simultaneously. A comprehensive studying approach is proposed and applied to a 50Watt PEM fuel cell system in the laboratory. The monitoring process is carried out through wireless LoRa node and gateway network concept. In this experiment, temperature sensor measure the temperature level of electrolyzer, fuel cell stack and $H_2$ storage tank and transmitted the measured value of data to the management control unit (MCU) through the individual node and gateway of each PEMWE and PEMFC. In MCU we can monitor the temperature and its effect on the performance of the fuel cell system and control it to keep the lower heating value to increase the efficiency of the fuel cell system. And we also proposed a mathematical model and operation algorithm for PEMWE and PEMFC. In this model, PEMWE gives higher efficiency at lower heating level where as PEMFC gives higher efficiency at higher heating value. In order to increase the performance of the fuel cell system, we are going to monitor, communicate and control the temperature and pressure of PEMWE and PEMFC by installing these systems in a building of university which is located in the southern part of Korea.