• 제목/요약/키워드: 프레임 화소 차이 값

검색결과 13건 처리시간 0.022초

무인 영상 감시 시스템을 위한 실시간 얼굴 영역 추출 알고리즘 (Real-time Face Localization for Video Monitoring)

  • 주영현;이정훈;문영식
    • 전자공학회논문지C
    • /
    • 제35C권11호
    • /
    • pp.48-56
    • /
    • 1998
  • 본 논문에서는 영상 감시 시스템을 위한 이동물체 추적 및 얼굴 영역 추출 알고리즘을 제안한다. 제안된 방법은 두 단계로 구성되어 있으며, 첫 번째의 이동 물체 감지 단계에서는 각각의 입력 프레임에 대하여 화소값의 변화를 기반으로 한 세 종류의 특징값들을 추출한 다음, 그 값들에 의하여 입력 프레임을 다섯 종류의 클래스로 분류한다. 분류 결과 현재의 프레임이 이동물체를 포함하고 있다면 두 번째의 얼굴 영역 분리 단계에서 컬러 정보와 프레임간의 차이를 이용하여 그 얼굴 영역을 추출하게 된다. 제안된 알고리즘은 광류등 계산시간이 많이 걸리는 특징값들에 의존하지 않으므로 실시간 처리에 적합하다. 또한 여러 테스트 영상시퀀스에 대하여 실험을 수행한 결과 본 논문에서 제안된 알고리즘의 유용성이 입증되었다.

  • PDF

많은 통행량과 조명 변화에 강인한 빠른 배경 모델링 방법 (A Fast Background Subtraction Method Robust to High Traffic and Rapid Illumination Changes)

  • 이광국;김재준;김회율
    • 한국멀티미디어학회논문지
    • /
    • 제13권3호
    • /
    • pp.417-429
    • /
    • 2010
  • 배경 제거를 위한 많은 연구가 있어왔음에도 기존의 방법들을 실제 환경에 효과적으로 적용하기에는 아직도 많은 어려움이 있다. 본 논문에서는 배경 제거를 실제 환경에 적용하면서 만나게 되는 다양한 문제들을 해결하기 위해 기존의 가우시안 혼합 모델 방법을 개선하는 배경 제거 방법을 제안한다. 첫째로 제안한 방법은 낮은 계산량을 얻기 위하여 고정 소수점 연산을 이용하였다. 배경 모델링 과정은 변수들의 높은 정밀도를 요구하지 않기 때문에 제안한 방법에서는 고정 소수점 변수를 이용함으로서 정확도를 유지한 채 연산 속도를 크게 향상시킬 수 있었다. 두 번째로 보행자들의 높은 통행량 하에서 흔히 발생되는 전경 객체가 배경으로 학습되는 문제를 피하기 위하여 각 화소의 정적인 정도를 이용하여 배경 모델의 학습 속도를 동적으로 조절하였다. 즉 최근 화소 값에 큰 차이가 발생한 화소들은 배경 영역이 아닐 가능성이 높으므로, 이에 대해 낮은 학습 비율을 적용함으로써 높은 통행량을 보이는 영상에서도 유효한 배경 모델을 유지하는 것이 가능했다. 마지막으로 영상의 빠른 밝기값 변화에 대응하기 위하여 연속한 두 프레임 간의 밝기 변화를 선형 변환으로 추정하였으며, 훈련된 배경 모델을 이 선형 변환에 의해 직접적으로 변환시켜 주었다. 제안한 고정 소수점 연산에 의해 기존의 가우시안 혼합 배경 모델링 방법을 구현한 결과 배경 제거에 기존 방법의 약 30%의 연산시간 만을 필요로 하였다. 또한 제안한 방법을 실제 환경의 영상에 적용한 결과 기존의 배경 제거 방법에 비해 검출률이 약 20% 향상되었으며, 오검률은 5~15% 가량 낮아지는 것을 확인하였다.

웨이블릿 기반의 신경망과 불변 모멘트를 이용한 실시간 이동물체 인식 및 추적 방법 (Real-time Moving Object Recognition and Tracking Using The Wavelet-based Neural Network and Invariant Moments)

  • 김종배
    • 대한전자공학회논문지SP
    • /
    • 제45권4호
    • /
    • pp.10-21
    • /
    • 2008
  • 본 논문은 실시간 감시 시스템을 위한 웨이블릿(wavelet) 기반의 신경망과 불변 모멘트를 이용한 이동물체 인식과 추적 방법을 제안한다. 제안한 방법의 첫 번째인 움직임 후보영역 검출 단계에서는 연속된 두 프레임간의 차영상 분석 방법을 기반으로 하여 물체의 움직임에 의해 화소값 변화가 발생한 후보영역을 검출한다. 두 번째인 물체 인식 단계에서는 검출된 후보영역에 웨이블릿 신경망(wavelet neural network: WNN) 기반의 인식 방법을 사용하여 추적하고자하는 물체가 포함되어 있는지를 판별한다. 세 번째인 물체 추적 단계에서는 인식된 물체에 웨이블릿 불변 모멘트(invariant moments) 기반의 매칭 방법을 사용하여 인식된 이동 물체를 추적한다. 영상내에서 이동물체를 검출하기 위해 본 논문에서는 이전 영상과 현재 영상간의 화소밝기 차이에서 적응적 임계값(adaptive threholding)을 사용하여 주위 환경 변화에 강인한 이동물체 검출이 가능하였다. 또한 물체의 인식과 추적을 위해 웨이블릿 특징값을 사용함으로써, 계산 시간의 감소와 영상의 잡음에 의한 영향을 최소화시킬 수 있을 뿐만 아니라, 물체 인식 정확도가 향상되었다. 제안한 방법을 일반 도로에서 획득한 영상에서 실험한 결과, 자동차 검출율은 92.8%, 프레임당 처리 시간은 0.24초이다. 이것을 통해 제안한 방법은 실시간 지능형 교통 감시 시스템에 유용하게 적용될 수 있음을 알 수 있다.