In this paper, we presents an algorithm which generates its high-resolution DTM using a low-resolution DTM of the sea floor terrain and fractal theory. The fractal dimension of each patch region divided from the DTM is extracted and then with this information and original data, each cell region in the patch is interpolated using the midpoint displacement method and a median filter is incorporated to generate natural and smooth sea floor surface. The effectiveness of the proposed algorithm is tested on a fractal terrain map.
In this paper, we presents an algorithm which restores lost data or increases resolution of a DTM(Digital terrain model) using fractal theory. Terrain information(fractal dimension and standard deviation) around the patch to be restored is extracted and then with this information and original data, the elevations of cells are interpolated using the random midpoint displacement method. The results of the proposed algorithm are compared with those of the bilinear and bicubic methods on a fractal terrain map.
In this study, a technique based on Fractal Theory with Erosion Model was developed to interpolate the river morphology data at the border area between river bed and river side where both surface and under water surveyings can not be committed easily. Three dimensional river morphology data along the Ara River was generated by the developed technique. The Ara River is an artificially constructed waterway for vessels between the Han River and West Sea of Korea. The result was compared with the survey data by RMSE of 0.384, while the IDW interpolation result has RMSE of 0.802. Consequently, the developed river morphology data interpolation technique using Erosion Model based Fractal Theory is conceived to be superior to the IDW which has been generally used in generating the river morphology data.
This paper presents the ECG data compression method referred the adaptive fractal interpolation algorithm. In the previous piecewise fractal interpolation(PFI) algorithm, the size of range is fixed So, the reconstruction error of the PFI algorithm is nonuniformly distributed in the part of the original ECG signal. In order to improve this problem, the adaptive fractal interpolation(AEI) algorithm uses the variable range. If the predetermined tolerance was not satisfied, the range would be subdivided into two equal size blocks. large ranges are used for encoding the smooth waveform to yield high compression efficiency, and the smaller ranges are U for encoding rapidly varying parts of the signal to preserve the signal quality. The suggested algorithm was evaluated using MIT/BIH arrhythmia database. The AEI algorithm was found to yield a relatively low reconstruction error for a given compression ratio than the PFI algorithm. In applications where a PRD of about 7.13% was acceptable, the ASI algorithm yielded compression ratio as high as 10.51, without any entropy coding of the parameters of the fractal code.
Journal of the Korean Society of Manufacturing Process Engineers
/
v.5
no.1
/
pp.7-12
/
2006
Recently, the fractal interpolation methods have been widely introduced and used to estimate and analyze various theoretical and experimental data. Because of the chaotic behaviors of dynamic cutting force data, some method for end-milling force analysis must be used. The fractal analysis used in this paper is fractal linear interpolation and fractal dimension. Also, several methods for computing fractal dimensions have been used in which the fractal dimension of the typical dynamic end-milling force was calculated according to number of data points that are generally lower than 200 data points sampled. This fractal analysis shows a possible prediction of end-milling force that has some dynamic chatter property or stationary property in endmilling operation.
Transactions of the Korean Society of Machine Tool Engineers
/
v.15
no.3
/
pp.67-72
/
2006
There are many modelling methods using theoretical and experimental data. Recently, fractal interpolation methods have been widely used to estimate and analyze various data. Due to the chaotic nature of dynamic roundness profile data in roundness some desirable method must be used for the analysis which is natural to time series data. Fractal analysis used in this paper is within the scope of the fractal interpolation and fractal dimension. Also, two methods for computing the fractal dimension has been introduced which can obtain the dimension of typical dynamic roundness profile data according to the number of data points in which the fixed data are generally lower than 200 data points. This fractal analysis result shows a possible prediction of roundness profile that has some different roundness profile in round shape operation.
KSCE Journal of Civil and Environmental Engineering Research
/
v.26
no.5D
/
pp.895-907
/
2006
In this study, in order to maximize the accuracy and efficiency of the existing interpolation method fractal methods are applied. Developed FEDISA model revives the irregularity of the real terrain with only a few information about base terrain, which can produce almost complete geographic information. The area of the model is set to $150m{\times}150m$, $300m{\times}300m$, $600m{\times}600m$, $1,200m{\times}1,200m$ to compare the real data with the data of the existing interpolation method and FEDISA model. By statistical verification of the results, the adaptability and efficiency of FEDISA model are investigated. It seems that FEDISA model will help a lot to obtain the terrain information about the changed terrain, such as the bottom of reservoirs and dams as well as large amount of destruction due to cutting and banking.
Journal of the Korean association of regional geographers
/
v.11
no.6
/
pp.530-542
/
2005
In this study, GIS method has been used to get fractal characteristics. Using the projected area and surface area, 2 dimensional fractal characteristic of terrain was found out. Correlation of fractal dimension and mean slope were also checked over. Results are as below. 1) To get a fractal dimension, the method which is using the surface area is also directly proportional to complexity of the terrain as other fractal dimension. 2) Fractal dimensions using the surface area, that is proposed in this thesis are carried out as below : Uiseong : $2.02{\sim}2.15$ Yeongcheon : $2.10{\sim}2.24$. These values are in a range of fractal $2.10{\sim}2.20$ dimensions which has known. 3) Correlation of mean slope and fractal dimension is diminished about 30% in a region which is more than $25^{\circ}$ of mean slope. So, in this region using the fractal dimension method is better than using the mean slope. From this study, on formula using the projected area and surface area is still good to get a fractal dimension that has been found. But to confirm this method the region of research should be wider and be set up the correlation of mean slope, surface area and fractal dimension. It can be applicable to restoration of terrain and traffic flow analysis in the future research.
Journal of the Korean Association of Geographic Information Studies
/
v.9
no.3
/
pp.123-135
/
2006
In this study, in order to maximize the accuracy and efficiency of the existing interpolation method fractal methods are applied. Developed FEDISA model revives the irregularity of the real topography with only a few information about base topography, which can produce almost complete geographic information. Moreover, as a tool for examining the adaptability and efficiency of the model, index of slope range $I_{SR}$, index of surface $I_{SA}$, and index of volume $I_V$ were developed. The model area is respectively set to $75m{\times}75m$, $150m{\times}150m$, $300m{\times}300m$, $600m{\times}600m$, and $1,200m{\times}1,200m$, and then the data obtained by combining the existing interpolation methods and FEDISA model were compared with real measurements. The result of the study showed the adaptability and efficiency of FEDISA model in topography restoration.
본 논문은 반복 수축 변환의 프랙탈(fractal) 이론에 근거한 심전도 데이터 압축에 관한 연구이다. 심전도 데이터에 반복 함수계(Iterated Function System : IFS) 모델을 적용하여 신호 자체의 자기 유사성(self-similarity)을 반복 수축 변환으로 표현하고, 그 매개변수만을 저장한다. 재구성시는 변환 매개변수를 반복 적용하여 원래의 신호에 근사되어지는 값을 얻게 된다. 심전도 데이타는 부분적으로 자기 유사성을 갖는다고 보고, 부분 자기-유사 프랙탈 모델(piecewise self-affine fractal model)로 표현될 수 있다. 이 모델은 신호를 특정 구간들로 나누어 각 구간들에 대해 최적 프랙탈 보간(fractal interpolation)을 구하고 그 중 오차가 가장 작은 매개변수만을 추출하여 저장한다. 이 방법을 심전도 데이타에 적용한 결과 특정 압축율에 대해 아주 적은 재생오차 (percent root-mean-square difference : PRD)를 얻을 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.