• Title/Summary/Keyword: 풍우교

Search Result 6, Processing Time 0.018 seconds

Passive Control System for Mitigation of Cable Vibration in Cable-Stayed Bridges (사장교의 케이블 진동저감을 위한 수동 제어시스템)

  • Hwang, Inho;Lee, Jong Seh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.881-885
    • /
    • 2006
  • Rain-wind induced cable vibration can cause serious problems in cable-stayed bridges. Externally attached dampers have been used to provide an effective means to suppress the vibration of relatively short stay-cables. For very long stay-cables, however, such damper systems are rendered ineffective, as the dampers need to be attached near the end of cables for aesthetic reasons. This paper investigates a new control system to mitigate the cable vibration. The proposed control system which consists of a laminated rubber bearing and an internal damper may be installed inside of the cable anchorage. A simple analytical model of the cable-damper system is developed first based on the taut string representation of the cable. The response of a cable with the proposed control system is obtained and then compared to those of the cable with and without an external passive damper. The proposed stay-cable vibration control system is shown to perform better than the optimal passive viscous damper, thereby demonstrating its applicability in large cable-stayed bridges for mitigation of rain-wind induced vibration of stay-cables.

Movable Anchorage System for Mitigation of Cable Vibration in Cable-Stayed Bridges with Sag (Sag가 고려된 사장교 케이블의 진동저감을 위한 Movable Anchorage 시스템)

  • Hwang, Inho;Park, Jun Hyung;Lee, Jong Seh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.657-664
    • /
    • 2008
  • Rain-wind induced cable vibration can cause the damages in the cable-stayed bridge due to very little inherent damping characteristics and low fundamental frequency. External Dampers attached to stay cables near anchorages have been shown to be effective means at short stay-cables. However, installation locations of external dampers are limited to a particular range due to aesthetic and practical reasons for very long stay-cables. A recent study by the authors showed that the stay-cable vibration system can perform better than the optimal passive viscous damper, thereby demonstrating its applicability in large cable-stayed bridges. This paper extends the previous study on the taut string representation of the cable by adding cable sag and inclination. The response of the proposed system compared to those of the cable with and without an external damper, and the movable anchorage system provides very effective mitigation of cable vibration. Cable damping ratio is seen to be remarkably reduced by movable anchorage system for a wide range of cable sag. This result shows that the sag effects of the proposed system should be considered.

Active Control System for Mitigation of Cable Vibration in Cable-Stayed Bridges (사장교 케이블 진동저감을 위한 능동제어시스템)

  • Hwang, In-Ho;Jeong, Cheol-Oh;Lee, Jong-Han;Lee, Jong-Seh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.557-563
    • /
    • 2007
  • Rain-wind induced cable vibration can cause serious problems in cable-stayed bridge. External dampers attached to the cables have become widely accepted as an effective means for stay-cable vibration suppression. For very long stay-cables, however, such damper systems are rendered ineffective, as the dampers need be attached near the end of cables for aesthetic reasons. A recent study by the authors proposed that a movable anchorage system is replaced direct fixed support of the cable with a support through a bearing and damper. This paper extends the previous work by adding active control system to mitigate the cable vibration. The response of a cable with the proposed active control system is obtained and then compared to those of the cable with and without an external passive damper. The results show that the active control system can provide superior protection than the passive control system for a cable vibration.

Shear Force Variation of Stiffening Girder caused by Vibration of Stay Cable (사장 케이블 진동에 의한 보강형의 전단력 변화)

  • Kim, Hyeon Kyeom;Hwang, Jae Woong;Lee, Myeong Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.1-8
    • /
    • 2009
  • Stay cable is easily exposed to vibration induced rainy wind effects. There are some problems for not only unexpected vibration but also well-known vibration. An outbreak of displacement by the said effects brings damages such as over-tension of cables and barriers, fatigue of anchorages and dampers, and additional shear force variation of stiffening girders. This study suggests analytic methodology for dynamic tension variation of cables and shear force variation of stiffening girders. Additionally this study announces with dynamic problems for cable stayed bridge briefly. To realize this subject, we divide restoring force into chord component and normal component and then make up the differential equations which can satisfy physical phenomenon for each component. Finally we apply adequate functions such as sinusoidal and parabola in order to reduce these differential equations. Therefore we can meet with good results through a series of above process. As a remarkable result, CIP recommendations (2002) give inadequate solution with over 10% error. However it gives very good solution if parts of our study are reflected at the said recommendations. The fact means that CIP recommendations (2002) well-known as international standard of stay cables are not even concern about this subject yet. For verification of this study, F.E. analysis using E.C.C. with external forces was fulfilled, and the accuracy and conciseness of this study were shown.

A Study of the Space Composition and Formation of Roo Bridges in Southern China (중국 남방지역 누교(樓橋)의 공간구성과 조형성에 관한 연구)

  • Jang, Hun-Duk
    • Journal of architectural history
    • /
    • v.16 no.3
    • /
    • pp.7-20
    • /
    • 2007
  • A bridge is a space used as a passage. This space should be functional, solid, and beautiful. Since the beginning of human life, bridge architecture has given importance to function as a connection from one place to another. Stepping stones in the stream were the connections between divided spaces in the agricultural life, the bridge on the entrances of a town was the place for separation, expectation, and communication for people gathering around the community. Southern Chinese provinces such as Zhejiang, Hunan, Yunnan, and Guizhon is famous for it's spectacular scenary, and tribes like the 'Miao' and 'Dong' live in a cooperate community. The 'Dong' tribe is one of the 'Yue' genealogy where the people have settled down in this place in the days of 'Qin Shi Huang(Qin dynasty)'. As the population of the 'Dong' tribe growed, they used a bridge to connect town to town. The scale became larger with additional design, giving splendid achievement to bridge architecture. The 'Fungyu bridge' in Tongdao and 'Chungyang bridge' in Sanjiang are some fine examples. The Fungyu bridge could be defined as a bridge which blocks wind and rain, this has the same function as the lounge bridge in Taishun located in southern Zhejiang province. In Taishun, 5 minority races such as the 'Dong' and 'Miao' people have been living together as a clan society for centuries on mountains as high as 1000m following their own tradition. The 'Xiliu river' flowing thorough has a variety of bridges remaining in it's original form, and it is recently known as a museum of ancient bridges. The formation of the bridges in Tongdao and Taishun shows that it is different with the arch and straight bridges remaining in Korea. In this study, it is readjusting the base data, showing plan characteristics and describing the construction of the wooden structure above the bridge post.

  • PDF

Development of Cable Excitation System for Evaluating Dynamic Characteristics of Stay Cables (사장교 케이블 동특성 평가를 위한 케이블 가진시스템 개발)

  • Kim, Nam-Sik;Jeong, Woon;Seo, Ju-Won;Ahn, Sang-Sup
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.71-79
    • /
    • 2003
  • As a critical member of cable-stayed bridges, stay cables play on important role of supporting the entire structure. Traffic, wind or rain-wind induced vibrations of stay cables would be a major cause of degrading both safety and serviceability of the bridge. One of the effective alternatives to solve this problem is to employ the cable dampers. In order to design the cable damper optimally, it is necessary to exactly estimate the dynamic characteristics of the existing cables. To achieve more reliable dynamic properties of stay cables, precise excitations inducing forced vibration are needed. Therefore, in this study, a cable excitation system(exciter) controlled digitally was developed. And to evaluate the performance of the cable exciter developed, a solution of the differential equation of cable motion considering the exciter was derived, Using the cable exciter, sine sweeping and resonance tests on a cable model were carried out to obtain the dynamic characteristics effectively.