• Title/Summary/Keyword: 풍요

Search Result 1,823, Processing Time 0.032 seconds

Validation of Sea Surface Wind Estimated from KOMPSAT-5 Backscattering Coefficient Data (KOMPSAT-5 후방산란계수 자료로 산출된 해상풍 검증)

  • Jang, Jae-Cheol;Park, Kyung-Ae;Yang, Dochul
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1383-1398
    • /
    • 2018
  • Sea surface wind is one of the most fundamental variables for understanding diverse marine phenomena. Although scatterometers have produced global wind field data since the early 1990's, the data has been used limitedly in oceanic applications due to it slow spatial resolution, especially at coastal regions. Synthetic Aperture Radar (SAR) is capable to produce high resolution wind field data. KOMPSAT-5 is the first Korean satellite equipped with X-band SAR instrument and is able to retrieve the sea surface wind. This study presents the validation results of sea surface wind derived from the KOMPSAT-5 backscattering coefficient data for the first time. We collected 18 KOMPSAT-5 ES mode data to produce a matchup database collocated with buoy stations. In order to calculate the accurate wind speed, we preprocessed the SAR data, including land masking, speckle noise reduction, and ship detection, and converted the in-situ wind to 10-m neutral wind as reference wind data using Liu-Katsaros-Businger (LKB) model. The sea surface winds based on XMOD2 show root-mean-square errors of about $2.41-2.74m\;s^{-1}$ depending on backscattering coefficient conversion equations. In-depth analyses on the wind speed errors derived from KOMPSAT-5 backscattering coefficient data reveal the existence of diverse potential error factors such as image quality related to range ambiguity, discrete and discontinuous distribution of incidence angle, change in marine atmospheric environment, impacts on atmospheric gravity waves, ocean wave spectrum, and internal wave.

Numerical Estimation of Wind Loads on FLNG by Computational Fluid Dynamics (전산유체역학을 이용한 FLNG의 풍하중 추정에 관한 연구)

  • Sang-Eui, Lee
    • Journal of Navigation and Port Research
    • /
    • v.46 no.6
    • /
    • pp.491-500
    • /
    • 2022
  • It has been noted that an accurate estimation of wind loads on offshore structures such as an FLNG (Liquefied Natural Gas Floating P roduction Storage Offloading Units, LNG FPSOs) with a large topside plays an important role in the safety design of hull and mooring system. Therefore, the present study aims to develop a computational model for estimating the wind load acting on an FLNG. In particular, it is the sequel to the previous research by the author. The numerical computation model in the present study was modified based on the previous research. Numerical analysis for estimating wind loads was performed in two conditions for an interval of wind direction (α), 15° over the range of 0° to 360°. One condition is uniform wind speed and the other is the NPD model reflecting the wind speed profile. At first, the effect of sand-grain roughness on the speed profile of the NPD model was studied. Based on the developed NPD model, mesh convergence tests were carried out for 3 wind headings, i.e. head, quartering, and beam. Finally, wind loads on 6-degrees of freedom were numerically estimated and compared by two boundary conditions, uniform speed, and the NPD model. In the present study, a commercial RANS-based viscous solver, STAR-CCM+ (ver. 17.02) was adopted. In summary, wind loads in surge and yaw from the wind speed profile boundary condition were increased by 20.35% and 34.27% at most. Particularly, the interval mean of sway (45° < α <135°, 225° < α < 315°) and roll (60° < α < 135°, 225° < α < 270°) increased by 15.60% and 10.89% against the uniform wind speed (10m/s) boundary condition.

Inelastic Dynamic Analysis of Structure Subjected to Across-Wind Load (풍직각방향 풍하중이 작용하는 구조물의 비탄성 동적 해석)

  • Ju-Won Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.3
    • /
    • pp.185-192
    • /
    • 2023
  • In this study, fluctuating wind velocity for time history analysis is simulated by a single variate, single-dimensional random process using the KBC2022 spectrum about across-wind direction. This study analyzed and obtained the inelastic dynamic response for structures modeled as a single-degree-of-freedom system. It is assumed that the wind response is excellent in the primary mode, the change in vibration owing to plasticization is minor, along-wind vibration and across-wind vibration are independent, and the effect of torsional vibration is small. The numerical results, obtained by the Newmark-𝛽 method, shows the time-history responses and trends of maximum displacements. As a result of analyzing the inelastic dynamic response of the structure with the second stiffness ratio(𝛼) and yield displacement ratio (𝛽) as variables, it is identified that as the yield displacement ratio (𝛽) increases when the second stiffness ratio is constant, the maximum displacement ratio decreases, then reaches a minimum value, and then increases. When the stiffness ratio is greater than 0.5, there is a yield point ratio at which the maximum displacement ratio is less than 1, indicating that the maximum deformation is reduced compared to the elastically designed building even if the inelastic behavior is permitted in the inelastic wind design.

Calculating Sea Surface Wind by Considering Asymmetric Typhoon Wind Field (비대칭형 태풍 특성을 고려한 해상풍 산정)

  • Hye-In Kim;Wan-Hee Cho;Jong-Yoon Mun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.770-778
    • /
    • 2023
  • Sea surface wind is an important variable for elucidating the atmospheric-ocean interactions and predicting the dangerous weather conditions caused by oceans. Accurate sea surface wind data are required for making correct predictions; however, there are limited observational datasets for oceans. Therefore, this study aimed to obtain long-period high-resolution sea surface wind data. First, the ERA5 reanalysis wind field, which can be used for a long period at a high resolution, was regridded and synthesized using the asymmetric typhoon wind field calculated via the Generalized Asymmetric Holland Model of the numerical model named ADvanced CIRCulation model. The accuracy of the asymmetric typhoon synthesized wind field was evaluated using data obtained from Korea Meteorological Administration and Japan Meteorological Administration. As a result of the evaluation, it was found that the asymmetric typhoon synthetic wind field reproduce observations relatively well, compared with ERA5 reanalysis wind field and symmetric typhoon synthetic wind field calculated by the Holland model. The sea surface wind data produced in this study are expected to be useful for obtaining storm surge data and conducting frequency analysis of storm surges and sea surface winds in the future.

Estimation of Topographic Factor of Wind Speed Using Geographic Information (지리정보를 이용한 풍속지형계수 산정)

  • Seong, Min-Ho;Park, Kyung-Sik;Choi, Se-Hyu
    • Spatial Information Research
    • /
    • v.18 no.3
    • /
    • pp.13-22
    • /
    • 2010
  • Due to the frequent gales and typhoons by anomaly climates and its subsequent loss of life and property, the importance of the research estimating wind load is being emphasized when structure is designed. It is necessary to measure geographical information exactly to estimate topographic factor of wind speed because the increase of topographic factor of wind speed means the increase of wind velocity and the increase of wind velocity has an influence on wind load proportionate to a square. Therefore, the accurate and reasonable estimation method of topographic factor of wind speed is presented in this study using ArchiCAD, an architectural BIM(Building Information Modeling) software. When the structure subjected to wind load is designed, reasonability and economic performance of design will be more improved by using the proposed method.

EFFECTS OF VELOCITY PARAMETERS OF THE WIND ON THE LINE FORMATION FOR 32 CYG (항성풍의 속도변수가 32 Cyg의 선윤곽에 미치는 효과)

  • 김경미;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.255-264
    • /
    • 1999
  • We calculate the theoretical line profiles in order to investigate the influence of various velocity parameters. Line profiles are calculated by using the exponential velocoty law with two acceleration regions for orbital phases $\phi$ = 0.07 and $\phi$ = 0.06. From this compttation we find that the influence of the wind velocity gradient on a giant star is more important in the region near the star than in the region away from the star. The observed lines show stronger emission than the calculated line profiles and we interpret the difference is caused by the inhomogeniety in the atmosphere of 32 Cyg.

  • PDF

An Evaluation of the Structural Stability of a Clip Type Prefabricated Greenhouse under Strong Wind and Heavy Snow Conditions (조립식 클립형 비닐하우스의 강풍 및 폭설시 구조 안정성 평가)

  • Ro, Kyoung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3423-3428
    • /
    • 2014
  • Numerical studies were performed to evaluate the structural safety of a greenhouse under both snow and wind loads. In the case of a wind load, fluid-structure interaction (FSI) method was used to consider the local pressure distributions on the greenhouse-induced by aerodynamic characteristics. The results showed that the maximum stress and deformation occur near the junction of pipe supports and rafters of the roof, where connecting clips are installed. Moreover, the wind load is a more severe condition than a snow load. Overall, these results will be used to design a prefabricated connecting clip with easy installation and low maintenance.

The Study on the Oceanic Surface Wind Retrieval using TRMM Microwave Imager (TRMM TMI를 이용한 해상풍 추정에 관한 연구)

  • Kim, Young-Seup;Hong, Gi-Man
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.5 no.2
    • /
    • pp.47-53
    • /
    • 2002
  • Ocean surface wind speed was estimated using TRMM (Tropical Rainfall Measurement Mission) TMI (TRMM Microwave/Imager) data. It is used the TRMM TMI brightness temperature and National Data Buoy Center's buoy winds speed dataset near North-America to estimate by the algorithm of the ocean surface wind speed retrieval over North America. Comparing with the buoy data by D-matrix equation, the result that RMSE, BIAS, and correlation coefficient are 2.19 $ms^{-1}$, 1.10 $ms^{-1}$, and 0.81, respectively. Therefore the estimated oceanic surface wind speed by TRMM TMI brightness temperature data show that available to ocean research over upper ocean.

  • PDF

Wind Induced Risk Analysis of Highway Facilities (고속도로 시설물의 풍하중 위험도 해석)

  • Kim, Dong Hyawn;Lee, Il Keun;Jo, Byung Wan
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.6
    • /
    • pp.553-561
    • /
    • 2009
  • Risk analysis of highway sign supporting structures and sound barriers was done. Stochastic wind load was modeled by using extreme value distribution from site measurement and the variability of structural parameters was considered. Limit state functions were defined to assess structural stability by wind and risk of highway facilities was analyzed by combining wind hazard. According to the numerical analysis results, sound barrier post shows significantly higher risk than highway sign supporting structures. This is caused by the fact that the design codes of the structures are different. To distribute wind induced risk in highway structures, unification and improvement of design codes are required based on risk assessment.

Measurement and Analysis of Wind Response of InCheon Bridge (인천대교의 풍응답 계측 및 분석)

  • Kim, Saang-Bum;Im, Duk-Ki;Park, Hyun-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.340-343
    • /
    • 2011
  • 장대 케이블 교량의 풍응답을 계측할 수 있는 무선센서네트워크 기반의 풍응답 계측시스템을 개발하고, 이를 사용하여 인천대교의 시공단계별로 고유진동수, Mode Shape과 같은 Modal Parameters의 변화를 추정하고 보강형에서의 풍압분포와 보강형, 주탑, 케이블의 가속도를 계측하여 내풍 성능을 분석하였다. 개발된 계측 시스템은 인천대교 사장교의 전체 거동을 계측할 수 있도록, 1.5km 범위에 넓게 분포된 최대 55 Nodes에서 최대 1kHz의 동기화된 계측을 수행할 수 있으며, 각 Node별로 3축가속도나 풍압을 측정할 수 있다. 전체 Node에서 가속도를 계측하는 경우에는 최대 165 Channel을 1kHz로 측정할 수 있다. Modal 해석의 경우에, 고가교, 접속교, 사장교 주탑, 보강형, 케이블의 시공 단계별 동특성의 변화를 추정하였으며, 고가교에서는 모드해석을 통해 역추정한 구조계수를 정적재하실험 및 실험실에서의 Mold 시험결과와 비교하였으며 사장교 케이블에서는 케이블 댐퍼의 성능을 분석하였다. 또한 인천대교 보강형에서의 풍압분포를 계측하였으며, 풍압의 공간상관관계를 분석하였고, 풍하중 및 풍진동 특성을 분석하여 가속도 계측 결과와 비교하였다. 계측 및 분석 결과를 바탕으로 장대교량의 내풍성능을 확보하고 향상시키는데 활용할 수 있을 것으로 기대한다.

  • PDF