• Title/Summary/Keyword: 풍압력

Search Result 43, Processing Time 0.014 seconds

A study on applications of the natural ventilation pressure(NVP) in local tunnels (터널내 자연환기력(NVP) 적용방안 연구)

  • Kim, Hyo-Gyu;Yoo, Ji-Oh;Lee, Chang-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.3
    • /
    • pp.269-285
    • /
    • 2014
  • In spite of the importance of the natural ventilation pressure(NVP) in tunnels for the optimal design of the ventilation system, there have been only few studies on the NVP because its measurement and quantitative analysis are not straightforward. This study aims at quantifying the amount of the NVP with the terrain and meteorological data for the local major tunnels. And ultimately this will lead to developing the guidelines for quantifying and applying NVP for the optimal design of tunnel ventilation system. 22 local tunnels in the major routes are studied for the NVP quantification. NVP derived from the meteorological data is in the range of 20~140 Pa, while NVP estimated from the terrain data ranges from 20 to 200 Pa. Since the jet fan pressure is about 10~15 Pa per unit, the minimum level of NVP expected in the local tunnels is larger than the pressure rise by one unit of the ordinary jet fan. This implies that NVP in local tunnels should be quantified and be taken into consideration for the economic and safe ventilation design. The barometric pressure difference between tunnel portals is found to be the most influential factor, accounting for 61% of the NVP, while the wind pressure acting on the portals and the chimney effects occupy 22% and 17%, respectively.

Characterization of deterioration of concrete lining in tunnel structures (터널 콘크리트 라이닝 구조물의 성능저하 특성)

  • Kim, Dong-Gyou;Jung, Ho-Seop;Bae, Gyu-Jin;Shin, Hyu-Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.4
    • /
    • pp.387-394
    • /
    • 2009
  • The objective of this study is to evaluate the durability and deterioration of concrete lining in the seven conventional tunnels. These tunnels were constructed about 40~70 years ago, and closed about 10~40 years ago. The field investigation and various laboratory testings were performed for this study. It was observed from the visual, examinations that the concrete linings of 7 tunnels were severely deteriorated, such as, cracks, leakages, desquamation, and exploitations. The compressive strengths obtained from rebound hardness method and uniaxial compressive strength test on core specimens largely differed depending on the locations in the tunnel. The maximum compressive strength of concrete lining was greater about 2 times than the minimum compressive strength of concrete lining in the same tunnel. The results of micro-structural analysis showed that the substances deteriorating the concrete lining, such as ettringite and thaumasite, were detected in the concrete lining of tunnel.

A Study on the Proper Crown Height of GT 100,000Ton Cruise ship and DWT 100,000Ton Container ship (10만톤급 크루즈선과 컨테이너선의 적정 마루높이에 관한 연구)

  • Kim, Seungyeon;Lee, Yunsok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.157-162
    • /
    • 2018
  • The increase of risk in port due to the increase in ship size and sea level rises, the standard crown height will increase. In this study, cruise and container ships will need to raise their crown height due to the projected wind pressure areas becoming larger due to the ships' size increase. The mooring assessment was evaluated with the rise of the crown height. The cruise ship of GT 100,000 tons exceeded the permissible breaking force of the mooring line under the crown height conditions of wind speed of 30 kts when the wind direction was $45^{\circ}$ to the direction of the bow. Also, the elevation angle of the pier and mooring line was analyzed and exceeded the crown height, and it was determined that it is necessary to adjust the crown height. Container ships of DWT 100,000 tons were analyzed to exceed the limit of sway motion at the crown height and it was determined that they need to be adjusted to the minimum crown height standard.