• 제목/요약/키워드: 풍력 발전기 소음

검색결과 109건 처리시간 0.026초

대형 건물 구조에 적합한 자기 부상을 이용한 저 풍속 적층 연곡형 풍력발전 시스템에 관한 연구 (A Sturdy on the Stack Sleep Twist Round Wind Power System Using Magnetic Levitation Technology)

  • 정자춘;장미혜
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.186.3-186.3
    • /
    • 2010
  • 본 논문은 우리나라와 같이 평균풍속이 낮고 바람 방향이 수시로 변하는 지역에 적합한 풍력발전 시스템에 관하여 논한다. 특히, 풍향에 상관없이 효율을 보장하고, 아주 약한 풍속 조건에서도 기동(Cut-in)되며, 낮은 평균풍속 5~6m/s인 지역에서도 경제적으로 풍력발전 단지의 구축이 가능하며, 다양한 지역에 설치가 가능하고, 소음이 적고 친(親) 환경적이며, 양산이 가능해 납기를 예측할 수 있으며 그리고 모든 부품 및 시스템의 국산화가 가능해야 한다는 7가지 조건을 만족하는 풍력발전시스템으로 이를 실현시키기 위하여 현재 풍력발전시스템의 가장 앞선 요소기술(state-of-the-art technology)인 직접구동 방식, 적층식, STR 블레이드, AFPM동기발전기, 자기부상 및 전자브레이크 등 5가지 기술을 복합 융합하여 최고의 효율 및 성능을 보장해 주는 적층 연곡형 시스템이다.

  • PDF

750kW 풍력발전기의 소음실증 (Noise Test and Evaluation of a 750kW Wind Turbine Generator)

  • 김석현;허욱;이현우
    • 산업기술연구
    • /
    • 제27권B호
    • /
    • pp.59-64
    • /
    • 2007
  • This study introduces an environmental noise evaluation procedure and results for a wind turbine (W/T) system. Test and evaluation are required by the international standard IEC 61400-11 in the aspect of environmental effect. Test and evaluation are performed on U-50 WT model which is first developed by the domestic W/T manufacturer. W/T test model is under operation in Daekwanryung wind test site. An integrated monitoring system in the test site is utilized for the evaluation. With the noise signal, meteorological data and W/T operational data are monitored in real time by the integrated monitoring system using LabVIEW. From the measured noise data, acoustic power level are estimated and compared with those of other similar size WT under the wind speeds required by international standard.

  • PDF

풍력발전기 소음의 진폭변조에 대한 예측 및 인지 가능성 고찰 (Perception of amplitude-modulated noise from wind turbines)

  • 이승훈;김호건;김규태;이수갑
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.180.1-180.1
    • /
    • 2010
  • Wind turbine noise is generally lower than that from other environmental noise sources such as road and railway noise. Nevertheless, some residents living more than 1km away from wind turbines have claimed that they suffer sleep disturbance due to wind turbine noise. Several researchers have maintained that residents near a wind farm may perceive large amplitude modulation of wind turbine noise at night, and this amplitude modulation is the main cause of the noise annoyance. However, to date only few studies exist on the prediction of the amplitude modulation of wind turbine noise. Thus, this study predicts amplitude modulated noise generated from a generic 2.5MW wind turbine. Semi-empirical noise models are employed to predict the modulation depth and the overall sound pressure level of the wind turbine noise. The result shows that the amplitude modulation is observed regardless of atmospheric stability, but the modulation depth in a stable atmosphere is 1~3dB higher than that in an unstable atmosphere near the plane of rotation where the blades move downward. Moreover, using the result of the noise prediction, this study estimates the maximum perceptible distance of the wind turbine noise cause by amplitude modulation. The result indicates that the wind turbine noise can be perceived at a distance of up to 1600m in the range of about 30~60 degree from the on axis in a extremely low background noise environment.

  • PDF

수평축 풍력발전기의 저주파소음을 포함한 광대역소음 해석에 관한 연구 (Broadband Noise Analysis of Horizontal Axis Wind Turbines Including Low Frequency Noise)

  • 김현정;김호건;이수갑
    • 신재생에너지
    • /
    • 제3권3호
    • /
    • pp.45-53
    • /
    • 2007
  • This paper demonstrates a computational method in predicting aerodynamic noise generated from wind turbines. Low frequency noise due to displacement of fluid and leading fluctuation, according to the blade passing motion, is modelled on monopole and dipole sources. They are predicted by Farassat 1A equation. Airfoil self noise and turbulence ingestion noise are modelled upon quadrupole sources and are predicted by semi-empirical formulas composed on the groundwork of Brooks et al. and Lowson. Aerodynamic flow in the vicinity of the blade should be obtained first, while noise source modelling need them as numerical inputs. Vortex Lattice Method(VLM) is used to compute aerodynamic conditions near blade. In the use of program X-foil [M.Drela] boundary layer characteristics are calculated to obtain airfoil self noise. Wind turbine blades are divided into spanwise unit panels, and each panel is considered as an independent source. Retarded time is considered, not only in low frequency noise but also In turbulence ingestion noise and airfoil self noise prediction. Numerical modelling is validated with measurement from NREL [AOC15/50 Turbine) and ETSU [Markham's VS45] wind turbine noise measurements.

  • PDF

건물일체형 풍력발전기의 진동저감 기법 연구 (A Study on Vibration Isolation Technique of Building-augmented Wind Turbine)

  • 이종원;문석준
    • 한국소음진동공학회논문집
    • /
    • 제25권3호
    • /
    • pp.160-168
    • /
    • 2015
  • Vibration issue of a building structure due to a wind turbine should be resolved for the application of building-augmented wind turbine. In this study, a dynamic analysis for an horizontal-axis upwind wind turbine is carried out to calculate vibration excited to an example building structure. Characteristics of vertical vibration transfer of the building structure are analytically studied and compared with a criteria. Then, a method to isolate the vibration is presented by analyzing the vibration characteristics of the wind turbine, and verified by applying to the building structure.

풍력발전기 타워 구조의 진동 특성 (Vibration Characteristics of the Tower Structures of Wind Turbine Generators)

  • 김석현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.49-59
    • /
    • 2009
  • Vibrations of the tower structures of 750kW and 6kW wind turbines(WT) are investigated by measurement and analysis. Acceleration responses of the WT towers under various operation condition are monitored in real time by the remote monitoring system using LabVIEW. Using the monitoring system, resonance condition of the tower structures is diagnosed with the wind speed data within the operating speed range. To predict the tower resonance frequency, 750 kW tower is modeled as an equivalent beam with a lumped mass and Rayleigh energy method is applied. For 6 kW WT, Rayleigh-Ritz analysis is carried out on the tower-cable coupled system. Calculated tower bending frequency is in good agreement with the measured value. Using the analysis model, parametric study is available in order to prevent the severe resonance.

  • PDF

750kW 풍력발전기 타워 구조의 진동 특성 (Vibration Characteristics of the Tower Structure of a 750kW Wind Turbine Generator)

  • 김석현;남윤수;은성용
    • 한국소음진동공학회논문집
    • /
    • 제15권2호
    • /
    • pp.219-224
    • /
    • 2005
  • Vibration response of the tower structure of a 750kW wind turbine (W/T) generator is investigated by measurement and analysis. Acceleration response of the W/T tower under various operation condition is monitored in real time by the vibration monitoring system using LabVIEW. Resonance state of the tower structure is diagnosed in the operating speed range. Resonance frequency range of the test model is investigated with the wind speed data of the test site. To predict the tower resonance frequency, tower is modeled as an equivalent beam with a lumped mass and Rayleigh energy method is applied. Calculated tower bending frequency is in good agreement with the measured value and the result shows that the simplified model can be used in the design stage of the W/T tower.

공탄성 변형효과를 고려한 10MW급 풍력발전기 블레이드의 성능해석 (Performance Prediction a 10MW-Class Wind Turbine Blade Considering Aeroelastic Deformation Effect)

  • 김동현;김요한;류경중;김동환;김수현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.657-662
    • /
    • 2011
  • In this study, aeroelastic performance analyses have been conducted for a 10MW class wind turbine blade model Advanced computational analysis system based on computational fluid dynamics (CFD) and computational structural dynamics (CSD) has been developed in order to investigate detailed dynamic responsed of wind turbine blade Reynolds-averaged Navier-Stokes (RANS) equations with k-${\omega}$ SST turbulence model are solved for unsteady flow problems of the rotating turbine blade model. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3D turbine blade for fluid-structure interaction (FSI) problems.

  • PDF

타워강성 효과를 고려한 소형 수직축 풍력발전기 운전 진동실험 및 해석 (Operational Vibration Experiment and Analysis of a Small Vertical-Axis Wind Turbine Considering the Effect of Tower Stiffness)

  • 추헌호;심재박;류경중;김동현;김봉영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.602-606
    • /
    • 2011
  • In this study, operational vibration experiment and analysis have been conducted for the 4-blade small vertical-axis wind turbine (VAWT) including the effect of tower elastic behavior. Computational structural dynamics analysis method is applied to obtain Campbell diagram for the VAWT with elastic tower. An open type wind-tunnel is used to change and keep the wind velocity during the ground test. Equivalent reduced elastic tower is supported to the VAWT so that the elastic stiffness effect of the tower can be reflected to the present vibration experiment. Various excitation sources with aerodynamic forces are considered and the dominant operating vibration phenomena are physically investigated in detail.

  • PDF