• Title/Summary/Keyword: 풍력터빈타워

Search Result 33, Processing Time 0.024 seconds

Evaluation of Dynamic Thrust Under Wind Shear in Wind Turbine Below Rated Wind Speed (정격풍속 이하에서 풍력터빈의 윈드쉬어 추력 동하중 개발)

  • Lim, Chae-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.407-414
    • /
    • 2016
  • As wind turbines are getting larger in size with multi-MW capacity, the blades are getting longer, over 40 m, and hence the asymmetric loads produced during the rotation of the rotor blades are increasing. Some factors such as wind shear, tower shadow, and turbulence have an effect on the asymmetric loads on the blades. This paper focuses on a method of modeling the dynamic load acting on a blade because of thrust variation under wind shear. A method that uses thrust coefficient is presented. For this purpose, "wind shear coefficient of thrust variation" is defined and introduced. Further, we calculate the values of the "wind shear coefficient of thrust variation" for a 2 MW on-shore wind turbine, and analyze them for speeds below the rated wind speed. Then, we implement a dynamic model that represents the thrust variation under wind shear on a blade, using MATLAB/Simulink. It is shown that it is possible to express thrust variations on three blades under wind shear by using both thrust coefficient and "wind shear coefficient of thrust variation."

Tower Flange Design Considering Vortex Shedding (Vortex Shedding을 고려한 Tower Flange 설계)

  • Lee Hyunjoo;Choi Wonho;Lee Seung-Kuh
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.68-71
    • /
    • 2005
  • In the case of wind turbine design, Optimization of tower structure is very important because tower generally takes about $20\%$ of overall turbine cost. In this paper, we calculated wind loads considering vortex shedding, and optimized tower flange using the calculation results. For optimization, we used FEM to analyze structural strength of the flange and blade momentum theory to calculate wind loads.

  • PDF

Design of Power and Load Reduction Controller for a Medium-Capacity Wind Turbine (중형 풍력터빈의 출력 및 타워 하중저감 제어기 설계)

  • Kim, Kwansu;Paek, Insu;Kim, Cheol-Jin;Kim, Hyun-Gyu;Kim, Hyoung-Gil
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.6
    • /
    • pp.1-12
    • /
    • 2016
  • A control algorithm for a 100 kW wind turbine is designed in this study. The wind turbine is operating as a variable speed variable pitch (VSVP) status. Also, this wind turbine is a permanent magnet synchronous generator (PMSG) Type. For the medium capacity wind turbine considered in this study, it was found that the optimum tip speed ratios to achieve the maximum power coefficients varied with wind speeds. Therefore a commercial blade element momentum theory and multi-body dynamics based program was implemented to consider the variation of aerodynamic coefficients with respect to Reynolds numbers and to find out the power and thrust coefficients with respect tip speed ratio and blade pitch angles. In the end a basic power controller was designed for below rated, transition and above rated regions, and a load reduction algorithm was designed to reduce tower vibration by the nacelle motion. As a result, damage equivalent Load (DEL) of tower fore-aft has been reduced by 32%. From dynamic simulations in the commercial program, the controller was found to work properly as designed. Experimental validation of the control algorithm will be done in the future.

Control System Design of NREL 5MW Wind Turbine (NREL 5MW 풍력터빈의 제어시스템 설계)

  • Nam, Yoonsu;Im, Changhee
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.5
    • /
    • pp.31-40
    • /
    • 2012
  • This paper introduces a methodology for NREL 5MW wind turbine, which is the variable speed and variable pitch(VSVP) control system. This control strategy maximizes the power extraction capability from the wind in the low wind speed region and regulates the wind turbine power as the rated one for the high wind speed region. Also, pitch control efficiency is raised by using pitch scheduling.Torque schedule is made of torque table depending on the rotor speed. Torque control is used for vertical region in a torque-rotor speed chart. In addition to these, mechanical loads reduction using a drive train damper and exclusion zone on a torque schedule is tried. The NREL 5MW wind turbine control strategy is comprised by the generator torque and blade pitch control. Finally, proposed control system is verified through GH Bladed simulation.

Generation and Verification of Synthetic Wind Data With Seasonal Fluctuation Using Hidden Markov Model (은닉 마르코프 모델을 이용하여 계절의 변동을 동반한 인공 바람자료 생성 및 검증)

  • Park, Seok-Young;Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.12
    • /
    • pp.963-969
    • /
    • 2021
  • The wind data measured from local meteorological masts is used to evaluate wind speed distribution and energy production in the specified site for wind farm However, wind data measured from meteorological masts often contain missing information or insufficient desired height or data length, making it difficult to perform wind turbine control and performance simulation. Therefore, long-term continuous wind data is very important to assess the annual energy production and the capacity factor for wind turbines or wind farms. In addition, if seasonal influences are distinct, such as on the Korean Peninsula, wind data with seasonal characteristics should be considered. This study presents methodologies for generating synthetic wind that take into account fluctuations in both wind speed and direction using the hidden Markov model, which is a statistical method. The wind data for statistical processing are measured at Maldo island in the Kokunnsan-gundo, Jeonbuk Province using the Automatic Weather System (AWS) of the Korea Meteorological Administration. The synthetic wind generated using the hidden Markov model will be validated by comparing statistical variables, wind energy density, seasonal mean speed, and prevailing wind direction with measurement data.

Design of Tower Damper Gain Scheduling Algorithm for Wind Turbine Tower Load Reduction (풍력터빈 타워 하중 저감을 위한 타워 댐퍼 게인 스케줄링 알고리즘 설계)

  • Kim, Cheol-Jim;Kim, Kwan-Su;Paek, In-Su
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.2
    • /
    • pp.1-13
    • /
    • 2018
  • This paper deals with the NREL (National Renewable Energy Laboratory) 5-MW reference wind turbine. The controller which include MPPT (Maximum power point tracking) control algorithm and tower load reduction control algorithm was designed by MATLAB Simulink. This paper propose a tower damper algorithm to improve the existing tower damper algorithm. To improve the existing tower damper algorithm, proposed tower damper algorithm were applied the thrust sensitivity scheduling and PI control method. The thrust sensitivity scheduling was calculated by thrust force formula which include thrust coefficient table. Power and Tower root moment DEL (Damage Equivalent Load) was set as a performance index to verify the load reduction algorithm. The simulation were performed 600 seconds under the wind conditions of the NTM (Normal Turbulence Model), TI (Turbulence Intensity)16% and 12~25m/s average wind speed. The effect of the proposed tower damper algorithm is confirmed through PSD (Power Spectral Density). The proposed tower damper algorithm reduces the fore-aft moment DEL of the tower up to 6% than the existing tower damper algorithm.

Study on Behavior Characteristics of L-Type Flange Bolt Connection for Supporting Structures of Wind Turbines (풍력터빈 지지구조물 L형 플랜지 볼트 접합부의 거동 특성에 관한 연구)

  • Jung, Dae-Jin;Hong, Kwan-Young;Choi, Ik-Chang
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.5
    • /
    • pp.279-286
    • /
    • 2021
  • In this study, we investigated the behavior characteristics of the L-type flange bolt connection, which is used to connect upper and lower flanges having L-type ring sections, by bolts. This connection is mainly used in domestic wind turbine structures, wherein it is a vital component as any imperfection could cause the collapse of the entire structural system. Therefore, understanding the behavior characteristics of the L-type flange bolt connection is imperative. In this study, the connection's response to external force was simulated using finite element (FE) analysis and the FE model was idealized to behave as a single L-type bolt flange. The variation in the bolt tension and the L-type flange stress were analyzed to understand the behavior characteristics of the connection. Moreover, the bolt-load function models proposed by Petersen, Schmidt/Neuper and VDI 2230, theoretically expressing a relation between bolt tension and external force, were compared to evaluate the suitability of the FE analysis and analyze the significant behavior characteristics of the connection. Furthermore, the changes in the bolt-load curve due to the variations in the partial dimensions of the L-type flange bolt connection were analyzed.

Offshore Wind Resource Assessment around Korean Peninsula by using QuikSCAT Satellite Data (QuikSCAT 위성 데이터를 이용한 한반도 주변의 해상 풍력자원 평가)

  • Jang, Jea-Kyung;Yu, Byoung-Min;Ryu, Ki-Wahn;Lee, Jun-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.11
    • /
    • pp.1121-1130
    • /
    • 2009
  • In order to investigate the offshore wind resources, the measured data from the QuikSCAT satellite was analyzed from Jan 2000 to Dec 2008. QuikSCAT satellite is a specialized device for a microwave scatterometer that measures near-surface wind speed and direction under all weather and cloud conditions. Wind speed measured at 10 m above from the sea surface was extrapolated to the hub height by using the power law model. It has been found that the high wind energy prevailing in the south sea and the east sea of the Korean peninsula. From the limitation of seawater depth for piling the tower and archipelagic environment around the south sea, the west and the south-west sea are favorable to construct the large scale offshore wind farm, but it needs efficient blade considering relatively low wind speed. Wind map and monthly variation of wind speed and wind rose using wind energy density were investigated at the specified positions.

An Experimental Study on Reinforcement Method for Reuse of Onshore Wind Turbine Spread Footing Foundations (육상풍력터빈 확대기초의 재사용을 위한 보강방법에 관한 실험적 연구)

  • Song, Sung Hoon;Jeong, Youn Ju;Park, Min Su;Kim, Jeong Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • In order to reuse existing onshore turbine foundations, it is important to redesign and reinforce the existing foundations according to the upgraded tower diameter and turbine load. In the present study, a slab extension reinforcement method and structure details of an anchorage part were examined in consideration of the reuse of spread footings, which are the most widely used foundation type in onshore wind turbine foundations. Experiments were conducted to evaluate the load resistance performance of a reinforced spread footing according to structure details of an anchorage part. The results showed that (1) the strength of an anchorage part could be increased by more than 30 % by adding reinforcement bars in the anchorage part, (2) pile-sleeves attached to an anchor ring contributed to an increase in rotational stiffness by preventing shear slip behavior between the anchor ring and the concrete, and (3) slab connectors contributed to an increase in the strength and deformation capacity by preventing the separation of new and old concrete slabs.

Fatigue Analysis of Welded Toe of Wind Turbine Tower Access Door (Wind Turbine Tower의 Door 용접부에 대한 피로 강도 연구)

  • Han Dong-Young;Koh Jang-Wook;Choi Won-Ho;Lee Seung-Kuh
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.72-75
    • /
    • 2005
  • Recently, as the global warming by fossil fuels become social issues. the interest of renewable energy producing system is increasing rapidly. Among these, wind turbines are most highlighted because of its economic competitiveness. The tower occupying about $20\%$ of overall turbine costs, is one of the main components of wind turbine. Tower access door located to base part of the tower, is used to enter the tower. This is the main structural weak point because of door hole, weldment, etc. In this study, by FEM, we retrieved the maximum van Mises stress at door location and carried out fatigue analysis using stresses at weld toe locations of tower access door part.

  • PDF