• Title/Summary/Keyword: 풍력발전 시스템

Search Result 794, Processing Time 0.026 seconds

Simulation for fault current of wind turbine generating system following transformer winding connection (변압기결선에 따른 풍력발전시스템의 고장전류에 대한 시뮬레이션)

  • An, Hae-Joon;Ro, Kyoung-Soo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.454-457
    • /
    • 2007
  • This study suggests a modeling of grid-connected wind turbine generation system that has induction generator, and aims to perform simulations for outputs by the variation of actual wind speed and for fault current of wind generation system by the transformer winding connection. This study is implemented by MARTLB & SIMULINK. The simulation shall be performed by assuming single line to ground fault generated in the system Generator power, rotor speed, terminal voltage, system voltage, and fault current shall be observed following the performance of simulation. The fault current change will be dealt through the simulation results for fault current of wind generation system following the grid-connected transformer winding connection and the simulation result by the transformer neutral ground method.

A Study on System Retrofit of Complex Energy System (복합에너지시스템의 성능개선에 관한 연구)

  • Choi, Jung-Hun;Moon, Chae-Joo;Chang, Young-Hak
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.61-68
    • /
    • 2021
  • The application of renewable energies such as wind and solar has become an inevitable choice for many countries in order to achieve the reduction of greenhouse gases and healthy economic development. However, due to the intermittent characteristics of renewable energy, the issue with integrating a larger proportion of renewable energy into the grid becomes more prominent. A complex energy system, usually consists of two or more renewable energy sources used together to provide increased system efficiency as well as greater balance in energy supply. Compared with the power system, control and optimization of the complex energy system become more difficult in terms of modeling, operation, and planning. The main purpose of the complex energy system retrofit for samado island with microgrid system is to coordinate the operation with various distributed energy resources, energy storage systems, and power grids to ensure its reliability, while reducing the operating costs and achieving the optimal economic benefits. This paper suggests the improved complex energy system of samado island with optimal microgrid system. The results of test operation show about 12% lower SOC variation band of ESS, elimination of operation limit in PV and reduction of operation time in diesel generator.

Model-based Diagnosis for Crack in a Gear of Wind Turbine Gearbox (풍력터빈 기어박스 내의 기어균열에 대한 모델 기반 고장진단)

  • Leem, Sang Hyuck;Park, Sung Hoon;Choi, Joo Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.6
    • /
    • pp.447-454
    • /
    • 2013
  • A model-based method is proposed to diagnose the gear crack in the gearbox under variable loading condition with the objective to apply it to the wind turbine CMS(Condition Monitoring System). A simple test bed is installed to illustrate the approach, which consists of motors and a pair of spur gears. A crack is imbedded at the tooth root of a gear. Tachometer-based order analysis, being independent on the shaft speed, is employed as a signal processing technique to identify the crack through the impulsive change and the kurtosis. Lumped parameter dynamic model is used to simulate the operation of the test bed. In the model, the parameter related with the crack is inversely estimated by minimizing the difference between the simulated and measured features. In order to illustrate the validation of the method, a simulated signal with a specified parameter is virtually generated from the model, assuming it as the measured signal. Then the parameter is inversely estimated based on the proposed method. The result agrees with the previously specified parameter value, which verifies that the algorithm works successfully. Application to the real crack in the test bed will be addressed in the next study.

The Operation Characteristic of the LED Taxi Light for Wavelength According to Meteorological Changes for Hybrid System Using a ESS (하이브리드 시스템의 ESS를 이용한 기상변화의 파장별 LED 항공유도등 동작특성)

  • Hwang, Lark-Hoon;Kim, Jin-Sun;Na, Yong- Ju
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.4
    • /
    • pp.265-274
    • /
    • 2016
  • In this study, the system was composed of the booster chopper and the power converter, which is a pulse width modulation (PWM) voltage inverter using a hybrid power generation system solar cell energy and wind force, Furthermore, in order to compensate the PWM voltage type inverter was linked with the general commercial power source, and through a normal operation of energy storage system (ESS), the system operated the LED Taxi Light by Wavelength according to Meteorological Changes at the airport in an efficient manner. The performance of the system was compared with the solar cell characteristics specification. In addition, for phase synchronization with the PWM voltage type inverter, the grid voltage was detected so as to operate the grid voltage and inverter output in the same phase and to connect the surplus electric power with the system. Finally, by developing a control circuit at the same time from which an excellent dynamic characteristics can be obtained through applying to the airport runway taxi light, it was concluded that a variety of taxi light can be pursued.

Compact Binary Power plant using unused thermal energy and Neural Network Controllers (미이용 열에너지를 이용한 소형 바이너리 발전과 신경망 제어기)

  • Han, Kun-Young;Jeong, Seok-Chan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.557-560
    • /
    • 2021
  • In the face of the COVID-19 pandemic, the Korean Government announced the Korean New Deal as a national development strategy to overcome the economic recession from the pandemic crisis and lead the global action aginst sturctural changes. The Green New Deal related with the energy aims to achieve net-zero emissions and accelerates the transition towards a low-carbon and green economy. To this end, the government plans to promete an increased use of renewable energy in the the society at large. This paper introduces a compact-binary power plant using unused thermal energy and a control system based on Neural Network in order to accelerate the transition towards a low-carbon and green economy. It is expected that he compact-binary power plant accelerate introduction of renewable energy along with solar and wind power.

  • PDF

A Study on the Application of a Wind Power Generation System Using Outdoor Air on the Rooftop and Indoor Ventilation (건물 옥상외기와 실내배기를 활용한 풍력발전시스템 적용 연구)

  • Lee, Yong-Ho;Park, Jin-Chul;Hwang, Jung-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.72-80
    • /
    • 2014
  • This study proposed a wind power generation system utilizing outdoor air on the rooftop and indoor ventilation, which would increase according to the building height, as a way to help to save energy consumption in a building by using wind power energy of the new renewable energy sources. The study measured the distribution of air currents and power generation according to the usage factor of exhaust pipes in the kitchen and bathroom and identified the elements to consider when applying a wind power generation system to buildings in order to use outdoor air on the rooftop increasing according to the height and the indoor ventilation produced in the facility vertical shafts inside the buildings by installing a wind power generation system on the rooftop. (1) The study measured the ventilation velocity of the kitchen hood and bathroom ventilation fan by changing the zone areas by the households according to the usage factor of [${\alpha}$]=33~100%. As a result, the kitchen ventilation pipe generated the ventilation wind of 3.0m/s or more at the usage factor of [${\alpha}$] 66% or higher, and the bathroom ventilation pipe generated ventilation velocity lower than 3.0m/s, the blade velocity of the wind power generator, even after the usage factor rose to [${\alpha}$]=100%. (2) As the old bathroom ventilation pipe generated the ventilation velocity of 3.0m/s, the blade velocity of the wind power generator, even with the rising usage factor [${\alpha}$], the application of an outdoor air induction module increased the ventilation velocity by 2.9m/s at the usage factor of [${\alpha}$]=33%, 3.8m/s at the usage factor of [${\alpha}$]=66%, and 3.6m/s at the usage factor of [${\alpha}$]=100%. Thus the ventilation velocity of 3.0m/s, the blade velocity of the wind power generator, or higher was secured. (3) The findings prove that the applicability of a wind power generation system using outdoor air on the rooftop and indoor ventilation is excellent, which raises a need for various efforts to increase the possibility of its commercialization such as securing its structural stability according to momentary gusts on the rooftop and typhoons in summer and making the structure light to react to the wind directions of outdoor air on the rooftop according to the seasons.

A Design for a Fuzzy Logic based Frequency Controller for Efficient wind Farm Operation (풍력발전단지의 효율적 운영을 위한 퍼지로직 기반 주파수 제어기 설계)

  • Kim, Se Yoon;Kim, Sung Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.186-192
    • /
    • 2014
  • Recently wind energy penetration into power systems has increased. Wind power, as a renewable energy source, plays a different role in the power system compared to conventional power generation units. As long as only single and small wind power units are installed in the power system, wind power does not influence power system operation and can easily be integrated. However, when wind power penetration reaches a significantly high level and conventional power production units are substituted, the impact of wind power on the power system becomes noticeable and must be handled. The connection of large wind turbines and wind farms to the grid has a large impact on grid stability. The electrical power system becomes more vulnerable to and dependent on wind energy production, and therefore there is an increased concern about the large wind turbines impact on grid stability. In this work, a new type of fuzzy logic controller for the frequency control of wind farms is proposed and its performance is verified using SimWindFarm toolbox which was developed as part of the Aeolus FP7 project.

Dynamic Analysis of Variable Speed Wind Power Systems with Doubly-Fed Induction Generators (이중여자 유도발전기에 의한 가변속 풍력 발전시스템의 동특성 해석)

  • Choi, Jang-Young;Jang, Seok-Myeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.6
    • /
    • pp.325-336
    • /
    • 2006
  • This paper deals with the dynamic analysis of variable speed wind power systems with doubly-fed induction generators (DFIG). First, the mathematical modeling of wind farm which consists of turbine rotor, DFIG, rotor side and grid side converter and control systems is presented. In particular, the equation for dynamic modeling of the DFIG and the AC/DC/AC converter is expressed as dq reference frame. And then, on the basis of mathematical modeling for each component of wind farm, dynamic simulation algorithms for speed and pitch angle control of wind turbine and generated active and reactive power control of the DFIG and the AC/DC/AC converter are established. Finally, Using the MATLAB/SIMULINK, this paper presents dynamic simulation model for 6MW wind power generation systems with the DFIG considering distribution systems and performs the dynamic analysis of wind power systems in steady state. Moreover, this paper also presents the dynamic performance for the case when the voltage sag in grid source and phase fault in bus are occurred.

The Analysis of the interconnection Simulation Result for Dispersed Sources in Distribution Systems (배전계통에 있어서 분산전원 연계 판정 시뮬레이션 결과 분석에 관한 연구)

  • Kang, Min-Kwan;Park, Jae-Ho;Rho, Dae-Seok;Oh, Yong-Taek
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.90-92
    • /
    • 2006
  • 국가차원의 신 재생에너지 활성화 방안에 따라 지자체 등의 분산전원 시실계획이 점차 증가하고 있으나, 아직 우리나라에서는 분산전원의 배전계통 연계에 대한 체계적인 기술지침이 초기 단계에 있거나 제정 중에 있어서, 계통 연계와 관련하여 발전사업자와 전력회사간의 이해가 상충되는 등 문제점이 발생되고 있다. 또한, 대규모 분산전원 단지의 도입이 이루어지고 있으나, 이에 대한 기술적인 평가방안이나 해석 방법이 구체적으로 제시되어 있지 않아, 설치자(시도 및 지자체)와 운용자(한전의 배전지사/지점)들은 많은 혼돈과 어려움을 겪고 있는 실정이다. 따라서 본 논문에서는 태양광, 풍력 등의 분산전원이 배전계통에 도입되는 경우, 연계에 대한 기술적인적합여부를 종합적으로 평가 할 수 있도록 분산전원 연계판정 시뮬레이션 시스템을 연구하였다. 즉, 구체적으로는 전력용량, 전기방식, 역률, 뱅크 역 조류, 상시전압변동, 순시전압변동, 플리커, 단락용량, 연계가능용량 등이며, 이들 항목을 계통연계 가이드라인과 평가 알고리즘에 의하여 연계 적합 여부를 판단해 주는 시스템이다.

  • PDF

Fuzzy Modeling and Robust Stability Analysis of Wind Farm based on Prediction Model for Wind Speed (풍속 예측모델 기반 풍력발전단지의 퍼지 모델링 및 강인 안정도 해석)

  • Lee, Deogyong;Sung, Hwa Chang;Joo, Young Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.1
    • /
    • pp.22-28
    • /
    • 2014
  • This paper proposes the fuzzy modeling and robust stability analysis of wind farm based on prediction model for wind speed. Owing to the sensitivity of wind speed, it is necessary to study the dynamic equation of the variable speed wind turbine. In this paper, based on the least-square method, the wind speed prediction model which is varied by the surrounding environment is proposed so that it is possible to evaluate the practicability of our model. And, we propose the composition of intelligent wind farm and use the fuzzy model which is suitable for the design of fuzzy controller. Finally, simulation results for wind farm which is modeled mathematically are demonstrated to visualize the feasibility of the proposed method.