• Title/Summary/Keyword: 풍력로터

Search Result 100, Processing Time 0.026 seconds

Development of 1MW Dual-rotor Wind Turbine System (1MW급 Dual-rotor 풍력발전 시스템 개발)

  • Kim, Sung-Ju
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.196-198
    • /
    • 2007
  • 1MW급 듀얼로터(Dual rotor) 풍력발전 시스템을 충남 서천군 서면 마량리 서천화력발전소 회사장 부지에 지난 2007년 5월 설치를 완료하였다. 듀얼로터 풍력발전 시스템은 기존의 싱글(Single) 로터 시스템과 달리 바람의 이용율의 극대화를 위해 2개의 로터 시스템으로 구성되어 있으며, 실시간으로 변하는 바람의 방향에 로터의 방향이 향하도록 프리요(Free yaw)를 실현하였다. 본 연구에서는 1MW급 듀얼로터 풍력발전 시스템의 특징과 구성에 관한 전반적인 사항에 대해 소개하였다.

  • PDF

Design and stress analysis of composite helical rotor and wind power tree (복합재를 이용한 헬리컬 로터와 풍력터빈 나무 설계 및 구조해석)

  • Ha, Min-Su;Han, Kyoung-Tae;Choi, Kyoung-Ho;Park, Young-Chul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.59-65
    • /
    • 2013
  • The objective of this paper is to analyze the structure of the wind power tree using a helical type wind turbine. The blades of a helical rotor is designed with a composite material. The structural analyses of a helical rotor have been implemented by finite element method. The structural analyses of the wind power tree which support four helical rotor, have been performed under a wind load, a rotational velocity of a rotor, and dead weight.

Aerodynamic Analysis of the NREL Phase Ⅵ Rotor using the CFD (NREL Phase Ⅵ 로터에 대한 공력해석)

  • Kang, Tae-Jin;Lee, Sea-Wook;Cho, Jin-Soo;Gyeong, Namho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.315-320
    • /
    • 2008
  • This paper describes aerodynamic characteristics for the NREL(National Renewable Energy Laboratory) Phase VI rotor using the Fluent which is a commercial flow analysis tool. Aerodynamic analysis results are compared with experimental results by the NREL/NASA Ames wind tunnel tests. For three velocity cases, computed results are compared with experiment results at five spanwise positions. Computed results represented good agreement with the experimental results at low velocity. Otherwise computed results in suction side represents disagreement with the experimental results at high velocity. When interval between wind turbines is 10 times of rotor diameter, CFD research is performed to calculate the wake effect.

Dual-rotor Wind Turbine Generator System Modeling and Simulation (이중 로터 풍력발전 시스템 모델링 및 시뮬레이션에 관한 연구)

  • Cho, Yun-Mo;No, Tae-Soo;Min, Byoung-Mun;Lee, Hyun-Hwa
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.87-95
    • /
    • 2004
  • In this paper, an efficient method for modeling a dual-rotor type wind turbine generator system and simulation results are presented. The wind turbine is treated as a collection of several rigid bodies, each of which represents, respectively, main and auxiliary rotor blades, high/low speed shafts, generator, and gear system. Simulation software WINSIM is developed to implement the proposed modeling method and is used to investigate the transient and steady-state performance of the wind turbine system.

Performance Analysis and Pitch Control of Dual-Rotor Wind Turbine Generator System (Dual-Rotor 풍력 발전 시스템 성능 해석 및 피치 제어에 관한 연구)

  • Cho, Yun-Mo;No, Tae-Soo;Jung, Sung-Nam;Kim, Ji-Yon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.7
    • /
    • pp.40-50
    • /
    • 2005
  • In this paper, preliminary results for performance prediction of a dual-rotor wind turbine generator system are presented. Blade element and momentum theories are used to model the aerodynamic forces and moments acting on the rotor blades, and multi-body dynamics approach is used to integrate the major components to represent the overall system. Not only the steady-state performance but the transient response characteristics are analyzed. Pitch control strategy to control the rotor speed and the generator output is proposed and its performance is verified through the nonlinear simulation.

Shape design and flow analysis on a 200W-class gyromill type vertical axis wind turbine rotor blade (200 W급 자이로밀형 수직축 풍력터빈 로터 블레이드 형상설계 및 유동해석)

  • Cho, Woo-Seok;Kim, Hyun-Su;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.170-177
    • /
    • 2013
  • This study is focused on the shape design and flow analysis on a 200 W-class Gyromill type vertical axis wind turbine rotor blade. Single tube theory is adopted for the shape design of the turbine blade. 2-dimensional CFD analysis is conducted to examine the turbine performance with basic shape, and then 3-dimensional shape is determined from the examination of the performance. By the CFD analysis on the 3-dimensional shape of the wind turbine, performance of the turbine is examined and also, shape of the wind turbine rotor blade is determined accordingly. From the results of this study, a 200 W-class Gyromill type vertical axis wind turbine rotor blade is designed and the reliability of the design method is confirmed by CFD analysis.

Horizontal-Axis Wind Turbine System Modeling using Multi-body Dynamics (다몸체 역학을 이용한 수평축 풍력발전 시스템 모델링)

  • 민병문;노태수;송승호;최석우
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • In this paper, an efficient modeling method of Horizontal-Axis Wind Turbine(HAWT) system is proposed. This method Is based on representing a HAWT system as a multi-body system with several rigid bodies i.e. rotor blade, low/high speed shaft, gear system, md generator. Also, simulation software WINSIM is developed to evaluate performance of wind turbine system. Simulation results show that the proposed modeling method and simulation software are efficient and reliable.

Evalulation of the Tower Fatigue Loads by Ice Formation on Rotor Blades (로터 블레이드 결빙에 의한 타워 피로하중 평가)

  • Kim, Jeong-Gi;Park, Sun-Ho;Bang, Jo-Hyug;Jung, Jong-Hun;Kim, Sang-Dug;Ryu, Ji-Yune
    • Journal of Wind Energy
    • /
    • v.5 no.1
    • /
    • pp.43-49
    • /
    • 2014
  • Primarily, tower loads of a wind turbine arise from aerodynamic effect and a top head mass. But sometime asymmetric loads of rotor also affect on the tower loads. Especially ice formation on two blades out of three causes the asymmetric loads, because the ice formation on blades lead to large rotating mass imbalance. This rotating mass imbalance of rotor affects tower fatigue loads. So design load cases of ice formation on blade should be considered in the fatigue design loads of the tower according to GL guideline 2010. This paper describes the change of tower fatigue loads following increase of tower height in the condition of ice formation. Finally, the optimal operation strategy is examined in order to reduce tower fatigue design loads.

Individual Pitch Control of NREL 5MW Wind Turbine in a Transition Region (NREL 5MW 풍력터빈의 천이영역에서의 개별피치제어)

  • Nam, Yoonsu;La, Yo Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.210-216
    • /
    • 2013
  • Rotor blades experience mechanical loads caused by the turbulent wind shear and an impulse-like wind due to the tower shadow effect. These mechanical loads shorten the life of wind turbine. As the size of wind turbine gets bigger, a control system design for mitigating mechanical loads becomes more important. In this paper, individual pitch control(IPC) for the mechanical loads reduction of rotor blades in a transition wind speed region is introduced, and simulation results verifying IPC performance are discussed.

Individual Pitch Control of NREL 5MW Wind Turbine Blade for Load Reduction (NREL 5MW 풍력터빈의 블레이드 하중 저감을 위한 개별피치제어)

  • La, Yo-Han;Nam, Yoon-Su;Son, Jae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1427-1432
    • /
    • 2012
  • As the size of a wind turbine increases, the rotor diameter increases. Rotor blades experience mechanical loads caused by the wind shear and the tower shadow effect. These mechanical loads reduce the life of the wind turbine. Therefore, with increasing size of the wind turbine, wind turbine control system design for the mitigation of mechanical loads is important. In this study, Individual Pitch Control in introduced for reducing the mechanical loads of rotor blades, and a simulation for IPC performance verification is discussed.