• Title/Summary/Keyword: 풍량

Search Result 183, Processing Time 0.025 seconds

A Study on Performance of Energy Recovery Ventilator under Outdoor Conditions in Korea (국내 외기조건에서 폐열회수 환기장치의 성능에 관한 연구)

  • Kim, Il-Gyoum;Park, Woo-Cheul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.52-57
    • /
    • 2009
  • In this study, a simulation program has been developed to predict the performance of energy recovery ventilators fur various indoor and outdoor conditions. In order to get a fundamental data about domestic air condition, the heat recovery ventilator is selected with the product of the wind quantity $250m^3/h$ Japanese M companies which are satisfied at High Efficiency Certification Standards. At the case on which the heat recovery ventilator is established, heating load decreases by 69.1% and cooling load decreases by 59.4% in Seoul, and heating load decreases by 66.4% and cooling load decreases by 59.6% in Pusan. The maximum humidification load of winter or summer time with $0.737{\ell}/h$ or $1.008{\ell}/h$ occurred in March from Kangnung or August from Mokpo respectively. In Southern part region and East Sea of winter time, the condensation or frost on exhaust side dose not occurred on exhaust side, but the area of that outside is occurred. Therefore, the preventive measure from the area except a southern part region and the east coast area must be considered, in order to condense or frost not to occur on exhaustion side in winter.

Uniformity of Temperature in Cold Storage Using CFD Simulation (CFD 시뮬레이션을 이용한 농산물 저온저장고내의 온도분포 균일화 연구)

  • Jeong, Hoon;Kwon, Jin-Kyung;Yun, Hong-Sun;Lee, Won-Ok;Kim, Young-Keun;Lee, Hyun-Dong
    • Food Science and Preservation
    • /
    • v.17 no.1
    • /
    • pp.16-22
    • /
    • 2010
  • To maintain the storage quality of agricultural products, temperature uniformity during cold storage, which is affected by fan flow rate and product arrangement, is important. We simulated and validated a CFD (Computational Fluid Dynamics) model that can predict both airflow and temperature distribution in a cold storage environment. Computations were based on a commercial code (FLUENT 6.2) and two turbulence models. The standard k-$\varepsilon$ model and the Reynolds stress model (RSM) were chosen to improve the accuracy of CFD prediction. To obtain comparative data, the temperature distribution and velocity vector profiles were measured in a full-scale cold storage facility and in a 1/5 scale model. The agricultural products domain in cold storage was modeled as porous for economical computation. The RSM prediction showed good agreement with experimental data. In addition, temperature distribution was simulated in the cold storage rooms to estimate the uniformity of temperature distribution using the validated model.

A study on the characteristics for temporary ventilation of long subsea tunnels - focused on the current situation and improvement requirements (초장대 해저터널의 공사중 환기 특성에 관한 기초연구 - 현황 및 개선필요사항 중심)

  • Jo, Hyeong-Je;Chun, Kyu-Myung;Kim, Jong-Won;Lee, Ju-Kyung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.2
    • /
    • pp.153-166
    • /
    • 2015
  • Long subsea tunnel to be built below the seabed, as compared to the general railway tunnel, is subject to many restrictions in terms of spatial limitation when vertical or inclined shafts are built for the purpose of ventilation and fire safety. So, the construction of some artificial island is required to provide ventilation. But, because of construction difficulty and cost increase, it is necessary to minimize the artificial island construction. The longer ventilation distance is, the more fresh air requirement is needed. When supply airflow becomes excessive, duct size is restricted by the limitations of structure clearance and fan pressure and power increase exponentially. Therefore, in order to build a long subsea tunnel, it is necessary to overcome these practical problems and to develop technical solution that can keep the comfortable condition of tunnel environment during construction. In this study, as on ventilation method development suitable for long subsea tunnel, through comparison of temporary ventilation capacity calculation methods during construction phase, domestic and abroad, the application of Swiss SIA 196 code is found suitable for long subsea tunnel. And, through experiment on leakage of the duct connector, we confirmed that the leakage ratio per 100 m of domestic duct connection type is between 1.5~3.0%. Based on S-class duct of SIA 196 code, ventilation distance is 10.2 km, So, ventilation distance can be longer if duct connection method is improved. So, we confirmed that the improvement of leakage ratio is key issue in the construction-phase ventilation of long subsea tunnel.

Analysis on the Effect of Greenhouse Humidity Control by Counter-flow Ventilator in Winter (동절기 대향류형 환기장치의 온실 내 습도 조절 효과 분석)

  • Lee, Taeseok;Kang, Geumchoon;Jang, Jaekyung;Paek, Yee;Lim, Ryugap
    • Journal of Bio-Environment Control
    • /
    • v.29 no.3
    • /
    • pp.259-264
    • /
    • 2020
  • In this study, the humidity control effect of a counter-flow ventilator was analyzed in a greenhouse with high relative humidity at night in the winter season. A case of the counter-flow ventilator was 0.96 × 0.65× 0.82(W × D × H, m) and there were heat transfer element and two fans for air supply and exhaust in the counter-flow ventilator. Two counter-flow ventilators were used in this study and the setting humidity of the ventilators was 80%. The temperature and relative humidity at night(18:00-8:00) in the greenhouse were measured. In a greenhouse without a counter-flow ventilator, the average temperature and humidity was 14.9℃, 82.8%, respectively. When the counter-flow ventilator was operated, the corresponding averages were 15.1℃, 79.9%. The independent sample t test of monthly temperature and relative humidity showed no difference in temperature, and a significant difference in relative humidity with 1% of the significance level. Therefore, using the counter-flow ventilator helps to control relative humidity in greenhouse and increase yield.. And further research considering the pros and cons of using the counter-flow ventilator is needed.

Effect of the HVAC Conditions on the Smoke Ventilation Performance and Habitability for a Main Control Room Fire in Nuclear Power Plant (원자력발전소 주제어실 화재 시 공조모드가 배연성능 및 거주성에 미치는 영향 분석)

  • Kim, Beom-Gyu;Lim, Heok-Soon;Lee, Young-Seung;Kim, Myung-Su
    • Fire Science and Engineering
    • /
    • v.30 no.5
    • /
    • pp.74-81
    • /
    • 2016
  • This study evaluated the habitability of operators for main control room fires in nuclear power plants. Fire modeling (FDS v.6.0) was utilized for a fire safety assessment so that it could determine the performance of the smoke ventilation and operator habitability with the main control room. For this study, it categorized fire scenarios into three cases depending on the conditions in the HVAC system. As a result of fire modelling, it showed that Case 1 (with HVAC) would give rise to the worst situation associated with the absolute temperature, radiative heat flux, optical density, and smoke layer height as deliberating the habitability and smoke ventilation. On the other hand, it showed that Cases 2 (w/o HVAC) and 3 can maintain much safer situations than Case 1. In the case of temperature at 820 s, Cases 2 and 3 were up to approximately 63% greater than Case 1 in the wake of ignition. In addition, the influence of radiative heat flux of Case 1 was even larger than Cases 2 and 3. That is, the radiative heat fluxes of Cases 2 and 3 were approximately 68% higher than Case 1. Furthermore, when it comes to considering the optical density, Case 1 was approximately 93% greater than Cases 2 and 3. Accordingly, it expected that the HVAC system can influence a the performance on the smoke ventilation that can be sustainable for operator habitability. On the other hand, it revealed an inconsecutive pattern for the smoke layer height of Cases 2 and 3 because supply vents and exhaust vents were installed within the same surface.

A study on the air leakage performance improvement of duct coupling for temporary ventilation of long subsea tunnel (초장대 해저터널의 공사중 덕트 접속부의 누풍 성능 개선에 관한 연구)

  • Jo, Hyeong-Je;Min, Dea-Kee;Kim, Jong-Won;Lee, Ju-Kyung;Beak, Jong-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.319-333
    • /
    • 2017
  • The construction of long sub-sea tunnel does not provide the favorable condition for the installation of ventilation system to be used during construction due to the constrained construction space. For the ventilation system required during construction, the artificial island where ventilation shaft is located is constructed at some location along the sub-sea tunnel route, which requires a high construction cost. Therefore, it is intended, as much as possible technically, to minimize the construction of artificial island. However, this requires a longer distance between ventilation shafts, there-by causing increased air leakage at the ventilation duct connection points due to the higher fan pressure being required to deliver ventilation air. Previously the air leakage was studied as an important issue. In this study experiments were carried out to develop the improved duct connection method considering various conditions such as, tunnel length, etc. Additionally, its performance results with leakage rates are shown and compared to the "S" class leakage rate of SIA. As a result, the new duct coupling type of improved method is analyzed as applicable to such a 30 km long tunnel with the leakage rate of $1.46mm^2/m^2$, which is better performance than SIA leakage rates.

Development of Air Cleaning Roll-Filter for Improving IAQ in Subway (도시철도 객실 공기질 개선을 위한 롤필터 개발연구)

  • Kwon, Soon-Bark;Park, Duck-Shin;Cho, Young-Min;Kim, Jong-Bum;NanGoong, Seok;Han, Tae-Woo;Cho, Kwan-Hyun;Kim, Tae-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.4
    • /
    • pp.313-319
    • /
    • 2011
  • In a modern society, various type of transportation modes are utilized, among them the subway system is the one of the main transportation mode which more than 7.21 million people ride a day in Seoul. Due to the increased interests on the indoor air quality (IAQ) of underground facilities, public concerns on IAQ of subway system are increasing also. Platform screen door (PSD) recently installed at the whole stations of Seoul subway and tunnel washing-out appeared to be effective in reducing particulate matters in the platform and tunnel. However there has not been any attempt to improve IAQ of subway cabin inside. Most technologies for removing airborne particulate matters are known to be difficult to adopt on the subway cabin due to the problem of maintenance cost. Therefore, the object of this study is a practical development of cabin air cleaning system which can reduce the concentration of airborne particles and harmful gases at the same time. In this paper, we focused on the development of particle removing system utilizing a roll-filter for increasing operating time of air filter. The prototype of system was designed and manufactured based on the numerical prediction results. For rollfilter device, 5 candidate filter materials were tested in point of particle collection efficiency and pressure drop. It was found that the electrically charged filter material showed the highest performance among them.

A Study on the sludge drying using waste heat of cogeneration plant (열병합발전소 보일러 폐열을 이용한 슬러지 건조 연구)

  • Ryu, Seung-Han;Lee, Sang-Hun;Shin, Dong-Hoon;Park, Jun-Hyung;Jo, Suk-Jin;Kwak, Sung-Sik;Woo, Young-Hoon;Jeon, Jong-Seok
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.11a
    • /
    • pp.60-60
    • /
    • 2011
  • 염색폐수의 정화에는 필연적으로 다량의 슬러지 폐기물이 발생한다. 염색폐수 슬러지는 그간 인근 공해 해상에 투기하는 해양 배출로 저렴하게 처리하였으나, 해양오염을 우려하는 국제협약(1972년 런던협약, 1996년 교토의정서)에 의하여 2008년 8월부터 배출기준이 강화되고 2012년 2월부터는 해양배출이 금지 될 예정이다. 염색폐수 슬러지의 해양 배출이 금지되면 대체 처리방법으로는 지정매립장을 통한 매립처리 방법이나 고온 소각시설에서의 소각처리 방법이 거론되고 있다. 그러나 매립처리는 슬러지 내 함유 수분으로 인한 침출수의 문제와 더불어 장기간 안정적으로 저렴하게 사용할 수 있는 대규모 처분장을 확보하기 어려운 실정이며 소각처리는 슬러지의 높은 함수율로 인해 소각 시보조 연료의 투입이 필연적으로 최근 원유가 급등 등 에너지 비용이 지속적으로 상승함을 고려할 때 소각처리비용 또한 상당한 고가가 될 것으로 예측된다. 이와 같이 슬러지 해양배출이 금지되면 섬유 염색업체들은 많은 환경비용 부담을 안을 것이다. 본 연구에서는 대규모 염색산업단지 공동폐수처리장에서 발생하는 염색폐수 슬러지의 효율적인 건조를 위해 산업단지 내의 열병합발전소에서 발생하는 보일러 폐열을 이용하였으며, 조건 특성 및 효율을 파악하기 위해 보일러 폐열의 특성을 고려하여 슬러지 두께 및 체류시간 등 건조공정 운영조건에 따른 변수별 연구를 수행하였다. 열병합발전소 보일러에서 배출되는 폐열은 온도가 $150^{\circ}C$ 정도로 기존의 슬러지 건조에서는 사용되는 $700^{\circ}C$에 비해서는 매우 저온이다. 하지만 보일러 배가스의 경우, 온도에 비해 많은 풍량을 가지고 있으므로 열량으로 환산시 충분히 가치가 있는 것으로 조사되었다. 염색폐수 슬러지의 경우, 함수율 70% 이내의 탈수 Cake 형태이므로 두께가 두꺼울수록 건조효율이 감소하였으며, 체류시간이 길어질수록 건조효율은 증가하나 20mm 이상에서는 건조효율이 급격히감소하였다. 이를 바탕으로 5톤/일 규모 슬러지 건조 Pilot Plant를 제작하여 운영하였는데, 염색폐수슬러지의 투입공정에서 슬러지와 열풍의 접촉면적을 넓혀 건조효율을 높이기 위하여 슬러지를 압출노즐을 이용하여 슬라이스 칩 형태로 제조하여 건조공정에 투입하였으며, 건조실 내에서도 건조효율의 상승을 위하여 내부열풍순환팬을 설치하여 운영하였다. Pilot 운영결과, 체류시간 52분에서 슬러지의 함수율은 70%에서 10%이하로 감소하였다.

  • PDF

Comparison of Heat Exchanging Performances Depending on Different Heat Exchanging Pipe Arrangement (열회수장치의 열교환 파이프형식별 열교환 성능 비교)

  • 서원명;윤용철;강종국;김정섭
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2001.04b
    • /
    • pp.100-102
    • /
    • 2001
  • 본 연구에서는 온실의 난방에 사용되는 열풍식 난방기 등의 배기 연통에 부착하여 배출되는 가스로부터 열을 회수할 수 있는 장치를 개발함에 있어서 연통과 열회수 장치간의 열 교환 성능을 3가지 상이하게 설계된 열 교환 장치(Fig. 1 참조)에 대하여 실험적으로 비교 분석하였다. Fig. 1-(a)는 열 교회수기 개발을 위해 기존에 사용한 장치로서 회수용 공기의 흐름방향이 배기 연통과 직각을 이룬 형식이며, Fig. 1-(b) 및 (c)는 열 회수 성능 개선을 위해 새로 설계된 형식으로서 각각 열 교환 파이프의 배치형식이 상이하나 회수용 공기의 흐름방향이 180도로 굴곡되는 U-자형 흐름이 이루어지도록 하였다. 실험에 사용된 공기 순환 펜의 용량은 AB-형의 경우에는 최대 25㎥/min이고, C-형 및 D-형의 경우는 공히 최대 42㎥/min으로서 송풍전압 조절장치를 이용하여 풍량을 연속적으로 조절할 수 있도록 하였다. U-자형 흐름형식인 C-형 및 D-형의 경우 흐름 방향의 굴곡으로 인한 마찰저항이 있을 것으로 예상은 했으나 당초 예상했던 것에 비해 마찰 저항이 지나치게 큰 것으로 밝혀졌다. 비록 설계된 열교환 튜브의 배열형식별 열 교환기의 외부 모양이 달라 회수기의 표면을 통한 대류 열 교환이 다소 차이를 보일 것으로 예상되지만 본 연구에서는 열 회수장치에 내장된 열 교환 튜브부분만을 통한 열 회수율을 중심으로 형식간의 성능을 비교하였다. 실험을 통하여 측정된 자료중 대표적인 예는 Fig-2와 같으며, 측정자료를 기준으로 분석된 열회수 성능에 대한 설계형식별 비교 결과는 Table-1과 같으며, 분석된 결과를 요약하면 다음과 같다: 1. AB-형 열회수시스템의 경우, 초기 투자비용과 현재의 농용 전력요금 하에서 에너지 절감규모를 비교하면, 대체로 1년을 전후하여 투자에 대한 보상이 충분히 가능할 것으로 판단된다. 2. C-형 및 D-형 열회수시스템의 경우, 열 회수용 공기의 흐름방향이 동일 공간내에서 180도 굴절됨으로서 저항이 크게 발생되어 송풍 펜의 전압 증가에 따른 유속증가가 미미하였으며, 굴절형의 열교환장치는 비록 열교환면적은 직선형과 유사하더라도 송풍 펜의 공기저항이 커져서 결국 열 회수성능이 기대했던 것만큼 크게 개선되지는 못했다. 3. 송풍펜의 용량은 AB-형에 사용된 용량인 25㎥/min 전후가 적절할 것으로 판단되며, 적정 송풍 펜용량 하에서 열 회수성능은 굴절형이 직선형보다 효과적인 것으로 나타났다. 다만, 곡선형은 물론 직선형에서도 열교환 튜브의 배치밀도, 튜브 길이 및 두께 등의 변화에 따른 최적화 연구가 수반되어야 할 것으로 판단된다.

  • PDF

A study on the heat recovery Characteristics of double tube type heat recovery ventilation system by double pipe material (이중관 재질에 따른 이중관형 열회수 환기장치의 열회수 특성 연구)

  • Kim, Eun-Young;Cho, Jin-Pyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.21-26
    • /
    • 2017
  • In this study, performance tests were conducted to investigate the applicability of a double-tube heat recovery ventilation system. Paper, aluminum, polymer, were investigated as materials for the inner tube using the same exhaust-air volume. In all cases, the temperature exchange efficiency of the aluminum tube was the highest, while the paper tube showed similar results to those of the polymer tube. This probably resulted from the differences in thermal conductivity and thicknesses of the materials. The humidity exchange efficiency was the highest for the paper tubes in all cases, while the aluminum tubes and polymer tubes showed similar results. The total heat exchange efficiency, which includes the values of humidity exchange and temperature exchange, was highest in the case of the paper tube, and the aluminum tube and the polymer tube showed similar results. In the case of the paper tube, sensible heat and latent heat exchange occur at the same time, and the coefficient of energy of the aluminum tube and polymer tube are large values, when to be compared with only applicably sensible heat exchange coefficient of the aluminum tube and the polymer tube of total heat exchange efficiency value. The results of this study could be applied to the design of a ventilation system.