• Title/Summary/Keyword: 푸리에 시리즈 급수

Search Result 2, Processing Time 0.019 seconds

A study on Optimizing Fourier Series Density estimates (퓨리에 급수기법에 의한 밀도함수추정의 최적화 고찰)

  • Kim, Jong-Tae;Lee, Sung-Ho;Kim, Kyung-Moo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.8 no.1
    • /
    • pp.9-20
    • /
    • 1997
  • Several methods are proposed for optimizing Fourier series estimators with respect to Mean Integrated Square Error metrics. Traditionally, such method have followed. one of two basic strategies; A stopping rules or the rules of determine multipliers. A central hypothesis of this study is that better estimates can be obtained by combining the two strategies. A new multiplier sequence is proposed, which used in conjunction with any of the stopping rules, is shown to improve the performance of estimator which relies solely on a stopping rule.

  • PDF

A Development of Seepage Analysis Model for Unsaturated Soil during Rainfall (강우시 불포화지반의 침투해석모형 개발)

  • Lee, Jung-Sik;Han, Heui-Soo;Jang, Jin-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.796-800
    • /
    • 2009
  • 토목구조물 및 사면의 붕괴는 집중호우가 내리는 경우 많이 발생하고 있으며, 특히 사면에서는 붕괴까지의 변형이 급속히 진행되어 이를 사전에 예방하기는 매우 어려운 현실이다. 침투 및 배수과정에서의 사면 붕괴는 강우침투로 인한 지반의 물리적 특성변화가 직접적으로 사면의 안전계수 변화에 영향을 주는 것으로 판단되며, 이때 발생하는 물리적 특성변화로는 침투시 사면 내 지반의 단위 중량은 증가하여 전단응력의 증가 및 전단강도 감소현상이 발생하며, 이와 반대로 사면 내 배수로 인하여 전단응력의 감소 및 전단강도의 증가현상이 발생한다. 따라서 본 연구에서는 강우침투로 발생하는 지반의 포화도 변화를 지반 내 투수계수의 함수로 설명하여 강우로 인한 지반의 침투 및 배수과정을 규명하고자 한다. 일반적으로 지반 내 지하수의 침투과정은 라플라스 공식을 적용한다. 그러나 라플라스 공식은 정상 상태(Steady State)일 경우에만 사용할 수 있고, 강우 등으로 인한 지하수의 수두 변화가 발생한 비정상 상태(Unsteady State)의 경우에는 부적합하므로 사면과 옹벽 등의 토질구조물에서는 안전성 변화를 계산할 수 없다. 이를 위해 사면 내 지반의 침투 및 배수과정을 투수계수의 함수로 나타내어, 강우의 침투과정을 Fourier Series, 변수분리법 및 섭동함수를 사용하여 식으로 유도함으로서 강우에 의한 지반의 침투 및 배수과정에 따른 사면 내 지하수의 분포를 예측한다. 침투과정 해석을 위하여 지표에서 포화대까지의 깊이 10m의 모델사면 및 지표부터 포화대까지의 포화도는 직선으로 비례한다는 가정을 적용한다. 먼저 푸리에 급수를 이용, 시간에 따른 온도를 열전달에 관하여 편미분하여 발생하는 열확산계수를 투수계수로 변환함에 따라 지하수의 시간과 수직방향거리에 대한 지반의 포화도를 산정한다. 변수분리법은 산정된 포화도에 지반의 초기조건과 경계조건를 고려하기 위해 적용하며, 변수분리법에 의해 산정된 지하수 분포를 섭동함수법으로 과도 및 정상상태로 분류한다. 본 연구의 수행으로 인해 얻어진 결과를 요약하면 다음과 같다. 첫째, Fourier Series와 변수분리법, 섭동함수를 이용하여 강우에 의한 지반의 포화도 변화를 수식적으로 나타낼 수 있으며 둘째, 지반에서의 강우침투과정을 식으로 표현함으로서, 깊이별 시간에 따른 포화도의 영역이 상부로부터 하부로 전이되는 과정을 알 수 있다. 셋째, 푸리에 급수를 이용한 지반의 침투계산으로 강우로 인한 지반의 포화영역 및 불포화영역을 명확히 구분할 수 있으며, 각 깊이별 포화도를 계산하여 각 구간에서 불포화구간의 전단강도에 대한 보다 정확한 계산이 가능하리라 판단된다.

  • PDF