• Title/Summary/Keyword: 표층해류

Search Result 107, Processing Time 0.03 seconds

Application of Objective Mapping to Surface Currents Observed by HF Radar off the Keum River Estuary (금강하구 연안에서 고주파 레이더로 관측된 표층해류에 대한 객관적 유속산출 적용)

  • Hwang, Jin-A;Lee, Sang-Ho;Choi, Byung-Joo;Kim, Chang-Soo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.1
    • /
    • pp.14-26
    • /
    • 2011
  • Surface currents were observed by high-frequency (HF) radars off the Keum River estuary from December 2008 to February 2009. The dataset of observed surface currents had data gaps due to the interference of electromagnetic waves and the deteriorating weather conditions. To fill the data gaps an optimal interpolation procedure was developed. The characteristics of spatial correlation in the surface currents off the Keum River estuary were investigated and the spatial data gaps were filled using the optimal interpolation. Then, the temporal and spatial distribution of the interpolated surface currents and the patterns of interpolation error were examined. The correlation coefficients between the surface currents in the coastal region were higher than 0.7 because tidal currents dominate the surface circulation. The sample data covariance matrix (C), spatially averaged covariance matrix with localization ($C^G_{sm}$) and covariance matrix fitted by an exponential function ($C_{ft}$) were used to interpolate the original dataset. The optimal interpolation filled the data gaps and suppressed the spurious data with spikes in the time series of surface current speed so that the variance of the interpolated time series was smaller than that of the original data. When the spatial data coverage was larger (smaller) than 70% of the region, the interpolation error produced by $C^G_{sm}$ ($C_{ft}$) was smaller compared with that by C.

Physical Structure of Eddies in the Southwestern East Sea (동해남서해역 와류의 물리적구조)

  • 이흥재;변상경
    • 한국해양학회지
    • /
    • v.30 no.3
    • /
    • pp.170-183
    • /
    • 1995
  • Eddies and surface current field in the southwestern part of the East Sea were investigated using satellite-tracked drifters, CTD, and ADCP from November 1992 to September 1993. Trajectories of surface drifters provided information for the first time on the meandering motion of the East Korean Warm Current in the Ullung Basin (referred as UB) and clearly indicated the existence of cyclonic and anticyclonic eddies of various scales. Anticyclonic eddies persisting for a relatively long period were observed in UB and the southwestern corner of the Northern (Japan) Basin (SNB), while a cyclonic eddy was found in the coastal area between Sokcho and Donghae during the summer. Analysis shows that the eddy in UB behaved as a stationary eddy at least during the observation period and the cyclonic eddy was closely related to the existence of a cold water mass. The anticyclonic eddy in SNB was larger than that in UB, but much elongated in shape. The eddy in UB is characteristic of major and minor axes of about 120 and 70 km, revolution period of 13.6 days, mean swirl velocity of about 24 cm/s, and mean eddy kinetic energy of 392 cm$\^$2//s$\^$2/. The eddy in SNB is described as follows; major and minor axes of 168 and 86 km, period of 14.9 days, mean swirl velocity of 29 cm/s and mean eddy kinetic energy of 629 cm$\^$2//s$\^$2/. The mean translational speed is about 3 cm/s for both eddies. The agreement of the surface current pattern in UB observed by ADCP with the geostrophic flow pattern may suggest that the eddy in UB was nearly in geostrophic balance. The eddy was found to be strongly bottom-controlled.

  • PDF

Oceanographic Variability in Yellow Sea using Satellite Data: study on the Relationship of Oceanic Variation in the Offshore Area and Viewpoint of Abnormal Rise in Coastal Seawater Temperature in 2004 (인공위성자료를 이용한 황해의 해황 변동: 2004년 연안해역 이상 수온 상승과 외해 해양 변동의 연관성 연구)

  • Moon, Jeong-Eon;Yang, Chan-Su;Ahn, Yu-Hwan
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.209-212
    • /
    • 2006
  • 황해와 동중국해의 해황 변동에 관한 연구는 현장관측을 중심으로 체계적으로 많이 수행되어 왔지만, 인공위성자료를 이용한 황해와 동중국해의 해황 변동 연구는 미비한 실정이다. 이것은 인공위성자료를 통해 얻을 수 있는 관측항목이 표층수온자료에 국한되어 있었기 때문이다. 그러나 SeaWiFS 해색위성과 같은 인공위성자료들을 이용하여 부유물 농도, 엽록소 농도 등이 원활하게 생산되고 있으며 최근 연구결과에 의해 염분과 유향성분 동도 추정 및 추출이 가능케 되었으므로 이들 인공위성자료를 이용한 황해와 동중국해의 해황 변동에 관한 연구를 수행하게 되었다. 특히 2004 년도는 계절변동에 있어서 이상기후의 해라고 점철되고 있다. 2004년 봄철의 폭설과 일시적인 고온현상, 여름철에는 10년만의 무더위, 겨울철에는 36년만에 가장 포근한 날씨가 지속되었다. 이러한 이상기후의 발생은 해양과 대기의 상호작용에 의해서 기인했을 것이라고 생각되어 한반도 주변 해역에서 황해와 동중국해의 해황변동이 연안해역의 해황변동과 어떠한 연관성이 존재하고, 이러한 요인들은 2004년도에 발생한 이상기후와 어떤 상관관계를 갖는지 연구하기 위한 기초연구를 진행하였다. 2003년 12월 - 2004년 2월과 2004년 12월 2005년 2월에 통일한 시기에 관측된 NOAA 표층수온 분포 영상자료들을 황해와 동중국해 해역을 중심으로 월별로 비교해보면 2003년 12월 - 2004년 1월에 관측된 표층수온 분포값보다 2004년 12월 - 2005년 1월에 관측된 표층수온 분포값이 상대적으로 높은 분포 특성을 나타내고 있었다. 이와 같은 현상은 국립수산과학원의 2004년 10월과 12월의 정선관측자료에서도 나타나고 있었다. 그러나 이와는 반대로 2004년 2 월에 관측된 표층수온 분포값보다 2005년 2월에 관측된 표층수온 분포값이 상대적으로 낮은 분포 특성을 나타내고 있었다. 따라서 인공위성자료를 이용한 황해의 2004년 해황 분석 결과는 이상수온 상승의 원인이 쿠로시오 해류의 변통과 관련성이 높다고 판단되며 이에 대한 지속적인 연구가 현재 진행중에 있다.

  • PDF

Sea level observations in the Korean seas by remote sensing (원격탐사를 이용한 한반도 주변해역의 해면변화 및 표층순환)

  • 윤홍주;김승철;변혜경;황화정
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.339-342
    • /
    • 2003
  • Sea level variations and sea surface circulations inthe Korean seas were observed by Topex/Poseidon altimeter data from 1993 through 1997. In sea level variations, the West and South Sea showed relatively high variations with comparison to the East Sea. Then, the northern and southern area in the West Sea showed the range of 20-30cm and 18-24cm, and the northern west of Jeju island and the southern west of Tsushima island in the South Sea showed the range of 15-20cm and 10-15cm, respectively. High variations in the West Sea was results to the inflow in sea surface of Yellow Sea Warm Current (YSWC) and bottom topography. Sea level variations in the South Sea was due to two branch currents (Jeju Warm Current and East Korea Warm Current) originated from Kuroshio Current (KC). In sea surface circulations, there existed remarkably three eddies circulations in the East Sea that are mainly connected with North Korea Cold Current (NKCC), East Korea Warm Current (EKWC) and Tushima Warm Current (TWC). Their eddies are caused basically to the influence of currents in sea surface circulations; Cyclone (0.03 cm/sec) in the Wonsan bay on shore with NKCC, and anticyclone (0.06 cm/sec) in the southwestern area of Ulleung island with EKWC, and cyclone (0.01 cm/set) in the northeastern area of Tushima island with TWC, respectively.

  • PDF

Current Status and Future Plans for Surface Current Observation by HF Radar in the Southern Jeju (제주 남부 HF Radar 표층해류 관측 현황 및 향후계획)

  • Dawoon, Jung;Jae Yeob, Kim;Jae-il, Kwon;Kyu-Min, Song
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.198-210
    • /
    • 2022
  • The southern strait of Jeju is a divergence point of the Tsushima Warm Current (TWC), and it is the starting point of the thermohaline circulation in the waters of the Korean Peninsula, affecting the size and frequency of marine disasters such as typhoons and tsunamis, and has a very important oceanographic impact, such as becoming a source of harmful organisms and radioactively contaminated water. Therefore, for an immediate response to these maritime disasters, real-time ocean observation is required. However, compared to other straits, in the case of southern Jeju, such wide area marine observations are insufficient. Therefore, in this study, surface current field of the southern strait of Jeju was calculated using High-Frequency radar (HF radar). the large surface current field is calculated, and post-processing and data improvement are carried out through APM (Antenna Pattern Measurement) and FOL (First Order Line), and comparative analysis is conducted using actual data. As a result, the correlation shows improvement of 0.4~0.7 and RMSE of about 1~19 cm/s. These high-frequency radar observation results will help solve domestic issues such as response to typhoons, verification of numerical models, utilization of wide area wave data, and ocean search and rescue in the future through the establishment of an open data network.

Application of a Convolution Method for the Fast Prediction of Wind-Induced Surface Current in the Yellow Sea and the East China Sea (표층해류 신속예측을 위한 회선적분법의 적용)

  • 강관수;정경태
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.3
    • /
    • pp.265-276
    • /
    • 1995
  • In this Paper, the Performance of the convolution method has been investigated as an effort to develop a simple system of predicting wind-driven surface current on a real time basis. In this approach wind stress is assumed to be spatially uniform and the effect of atmospheric pressure is neglected. The discrete convolution weights are determined in advance at each point using a linear three-dimensional Galerkin model with linear shape functions(Galerkin-FEM model). Four directions of wind stress(e.g. NE, SW, NW, SE) with unit magnitude are imposed in the model calculation for the construction of data base for convolution weights. Given the time history of wind stress, it is then possible to predict with-driven currents promptly using the convolution product of finite length. An unsteady wind stress of arbitrary form can be approximated by a series of wind pulses with magnitude of 6 hour averaged value. A total of 12 pulses are involved in the convolution product To examine the accuracy of the convolution method a series of numerical experiments has been carried out in the idealized basin representing the scale of the Yellow Sea and the East China Sea. The wind stress imposed varies sinusoidally in time. It was found that the predicted surface currents and elevation fields were in good agreement with the results computed by the direct integration of the Galerkin model. A model with grid 1/8$^{\circ}$ in latitude, l/6$^{\circ}$ in longitude was established which covers the entire region of the Yellow Sea and the East China Sea. The numerical prediction in terms of the convolution product has been carried out with particular attention on the formation of upwind flow in the middle of the Yellow Sea by northerly wind.

  • PDF

Extraction of Ocean Surface Current Velocity Using Envisat ASAR Raw Data (Envisat ASAR 원시자료를 이용한 표층 해류 속도 추출)

  • Kang, Ki-Mook;Kim, Duk-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.11-20
    • /
    • 2013
  • Space-borne Synthetic Aperture Radar(SAR) has been one of the most effective tools for monitoring quantitative oceanographic physical parameters. The Doppler information recorded in single-channel SAR raw data can be useful in estimating moving velocity of water mass in ocean. The Doppler shift is caused by the relative motion between SAR sensor and the water mass of ocean surface. Thus, the moving velocity can be extracted by measuring the Doppler anomaly between extracted Doppler centroid and predicted Doppler centroid. The predicted Doppler centroid, defined as the Doppler centroid assuming that the target is not moving, is calculated based on the geometric parameters of a satellite, such as the satellite's orbit, look angle, and attitude with regard to the rotating Earth. While the estimated Doppler shift, corresponding to the actual Doppler centroid in the situation of real SAR data acquisition, can be extracted directly from raw SAR signal data, which usually calculated by applying the Average Cross Correlation Coefficient(ACCC). The moving velocity was further refined to obtain ocean surface current by subtracting the phase velocity of Bragg-resonant capillary waves. These methods were applied to Envisat ASAR raw data acquired in the East Sea, and the extracted ocean surface currents were compared with the current measured by HF-radar.

Acoustic Characterization of Three Seamounts Located in the Northwest of Marshall Islands, Western Pacific (서태평양 마샬제도 북서쪽에 위치한 세 해저산에 대한 음향상 연구)

  • Lee, Tae-Gook;Lee, Kie-Hwa;Moon, Jai-Woon;Jung, Mee-Sook;Kim, Hyun-Sub;Lee, Sang-Mook
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.3
    • /
    • pp.193-206
    • /
    • 2004
  • Geophysical data including chirp (3 7 kHz) subbottom profile and detailed bathymetry were obtained over three seamounts in the Ogasawara Fracture Zone (OFZ) of the western Pacific, as a part of manganese crust survey onboard R/V Onnuri in 2003. The OFZ is a 150-km-wide, 600-km-long rift zone, which separates the East Mariana and Pigafetta Basin. The OFZ is unique in that it includes many seamounts (e.g., Magellan Seamounts andseamounts on the Dutton Ridge). The sub-seafloor acoustic echoes obtained near the OFZ were classified into following types on the basis of their characteristics: types I-1(pelagic sediment with parallel or subparallel reflectors), I-2 (pelagic sediment with no internal reflectors), and III-1 (reef build-up complex) on summit; types II-1 and III-2 (basement outcrop) on flank rift zone and upper slope, respectively; type III-3 (slump) on the lower slope and embayment between the flank rift zones; types II-2 (debrite) on the base of slope and basin floor; and types II-3 (turbidite or pelagic sediment) and II-4 (turbidite) on the basin floor. The mass-wasting that produced the complex of type II-2 debrite and III-3 slump on the lower slope and basin may have been caused by (1) strong tensional stress in the OFZ which may cause the numerous fissures or basement faults and (2) complex of the faults on the summit and steep upper slope. The variations in the echo type of pelagic sediment in the summit of seamounts may be related with the changes in the depositional and/or erosional environments. Type I-2 pelagic sediment, which is characterized by a thin and intermittent coverage, was probably deposited at a sheltered area when the current was strong, whereas type I-1 pelagic deposit occurred during a stage of progressive sedimentation.

  • PDF

Distribution and Characteristics of Surface Sediments on the Continental Shelf off the Eastern Coast of Korea (한국 동해 대륙붕 표층퇴적물의 분포와 특성)

  • Yong Ahn Park;Chang Sik Lee;Chang Bok Lee
    • The Korean Journal of Quaternary Research
    • /
    • v.4 no.1
    • /
    • pp.15-26
    • /
    • 1990
  • Narrow (10-20 km wide) and steep (0.3-$2.4^{\circ}$) continental shelf off the eastern coast of Korea is covered with terrigenous clastic sediments reflecting the Holocene fluctuation of sea level. Surface sediments on the inner shelf consist of muddy sand and sandy mud with some gravels near the coast. However, sand or muddy sand, shell fragments and well rounded gravels occur near the edge of continental shelf at the depth of about 130-l50m. The coarse sediments near the shelf edge seem to be the relict or palimpsest sediments deposited under the nearshore environment during the low-stand or sea level due to so-called the Wisconsinan glaciation. Distribution of recent sediments near the coast and the inner shelf may reflect the affect of waves and currents precluding the deposition of fine sediment near the coast and on the shallow portion of shelf. Eastern Korean Warm Current also nay have played an important role to the transport and distribution of fine sediments from the south.

  • PDF