해안 구조물의 신뢰성 설계과정에서 조위자료를 정규분포로 가정하여 설계를 수행하는 경우가 빈번하다. 그러나 조위 자료는 쌍봉형 정규 분포 형태를 따르기 때문에 설계과정에서 등가 정규분포 개념에 근거하여 등가평균 및 등가표준편차를 추정하게 되며, 이 과정에서 정규분포를 가정한 경우의 추정 평균 및 표준편차와는 다른 추정오차가 발생하게 된다. 본 연구에서는 쌍봉형 정규분포 형태를 따르는 조위에 대하여 등가평균 및 등가표준편차를 추정하고, 정규분포를 가정하여 추정한 평균과 표준편차와 비교하였다 그 결과, 등가 매개변수 추정오차는 조위조건과 조위의 크기에 따라 크게 변하고 있는 것으로 파악되었다. 인천의 경우, ${\pm}400cm$ 조건에서 등가평균 및 등 가표준편차 추정편차는 각각 100 cm 이상, 80~100 cm 정도로 파악되었으며, 조석이 약한 포항에서는 ${\pm}60cm$ 조건에서 모두 2~4 cm 정도의 작은 추정 편차를 보이고 있는 것으로 파악되었다.
본 논문에서는 비디오의 자동분류를 지원하기 위한 기반기술로서. 변형된 $x^{2}$-테스트와 자동 임계치 결정 알고리즘을 이용한 장면전환 검출 방법을 제안하였다. 변형된 $x^{2}$-테스트는 기존의 컬러 히스토그램과 각 채널 공간(RGB)에 NTSC표준에 따른 명암도 등급을 따로 계산하여 채널의 차이 값을 보다 세분화 할 수 있으며, 두 프레임사이의 상대적인 컬러 값 차이를 강조하는 기존의 $x^{2}$-테스트를 결합하여 보다 강건한 장면전환을 검출할 수 있다. 자동 임계치 결정 알고리즘은 연속된 프레임들로부터 변형된 $x^{2}$-테스트를 이용하여 추출된 차이 값을 이용한다. 먼저, 주어진 전체 차이 값들로부터 평균과 표준편차를 구하며, 이 평균값을 만족하는 차이 값들로부터 다시 평균과 표준편차를 계산하며, 이러한 연속적인 평균값 및 표준편차의 계산으로부터 표준편차가 가장 큰 시점에서의 평균값을 기준으로 임계치를 결정하는 방법이다. 제안된 방법은 다양한 비디오 데이터에서 실험되었으며, 실험결과 제안된 방법은 자동 임계치 결정에 효율적이며, 신뢰할만한 장면들을 검출하였다.
본 논문에서는 피라미드 계층간에 나타나는 잡음 신호의 특성을 바탕으로 라플라시안 피라미드를 이용한 X-ray 영상의 잡음 제거 방법을 제안한다. 제안하는 방법은 잡음 제거를 위해 X-ray 영상 신호의 지역적 표준 편차와 신호의 영역적 특징을 이용하였다. 지역적 표준 편차는 영상의 경계선 정도와 비례하는 특징을 가지기 때문에 지역적 표준 편차를 이용하여 경계 정보의 손실을 막았다. 또한 라플라시안 피라미드의 각 계층에 잡음 신호가 좁은 면적을 가지며 분포되는 영역적 특징을 이용하여 평평한 지역에서 잡음 신호의 제거 성능을 높였다. X-ray영상 및 잡음이 첨가된 표준 영상에 대한 실험을 통해 제안된 방법이 경계 정보의 유지와 잡음 제거에서 기존의 방법보다 향상된 성능을 보임을 확인하였다.
고속도로에서 교통사고에 중요한 두 영향요소는 운전자요소와 도로환경요소로 구분되어 진다. 그동안 여러 연구에서 도로환경요소중 설계요소로 알려진 곡선반경, 종단경사, 편경사, 관찰속도와 교통사고와 관련성을 연구하였고 그 밀접한 관련성을 제시하고자 하였다. 본 논문에서는 이들 관련요소 크기가 교통사고와 관련성이 깊다는 사실에 대하여 상관관계분석을 통하여 확인하고자 하였다. 이에 더하여 이들 설계관련요소의 표준편차를 설계일관성으로 정의하고 교통사고의 증감과 비교하여 봄으로써 표준편차로 특징 지워지는 설계요소와 설계속도의 일관성이 교통사고 발생과 상관성이 깊다는 사실을 도출하였다. 본 논문의 결과는 선형설계과정에서 설계일관성의 수치화된 활용을 더 활성화시킬 것으로 기대된다.
본 다중반응표면 최적화는 다수의 반응변수(품질특성치)를 동시에 고려하여, 입력변수의 최적 조건을 찾는 것을 목적으로 한다. 지금까지 다중반응표면 최적화를 위하여 다양한 방법이 제안되어 왔는데, 그 중 평균제곱오차 최소화법은 다수의 반응변수의 평균과 표준편차를 동시에 고려하여 최적화하는 방법이다. 이 방법은 기본적으로 평균과 표준편차가 동일한 가중치를 가지고 있다는 것을 전제로 하고 있다. 그러나 문제의 상황에 따라 평균과 표준편차에 서로 다른 가중치를 부여해야 하는 경우도 있다. 이에 본 논문에서는 기존의 평균제곱오차를 확대하여 평균과 표준편차에 서로 다른 가중치도 부여할 수 있도록 가중평균제곱오차 최소화법을 제안하고자 한다.
이 연구는 학교수학의 모평균과 모비율의 신뢰구간의 추정을 비교하면서 두 추정간에 일관성이 확보되고 있는지에 대해 고찰하였다. 이 결과를 토대로, 이 연구에서는 표본평균과 표본비율을 동일한 방식으로 취급하는 것, 모평균과 모비율의 신뢰구간의 예를 구성할 때 모표준편차 대신에 표본표준편차의 관측값을 대입하는 절차를 동일하게 적용하는 것, 표본비율 $\hat{P}$와 그에 대한 관측값 $\hat{p}$을 구별하는 것과 같은 일관성 확보 방안을 제안하였다.
이 논문에서는 다양한 불가사리 영상을 판단하여 불가사리를 인식하는 기법을 제안하고자 한다. 아무르불가사리의 단일개체를 인식하는 경우는 불가사리의 오목 특성과 단선 특성을 이용하여 불가사리 여부를 판단할 수 있으나, 다중개체의 경우는 오목과 단선을 이용한 불가사리의 특징 추출이 불가능하기 때문에 불가사리로 인식할 수 없다. 따라서 다중개체의 영역 중심 모멘트와 장선을 이용하여 장선의 표준편차, 장선별 표준편차 값, 상대각 표준편차, 유효편차수 등의 특징을 이용한 인식 기법을 제안하고자 한다. 제안한 기법의 실험 결과 장선의 표준편차 조건이나 상대각의 유효편차수 조건을 만족하지 못하여 인식에 실패한 경우도 있었으나 약 95%의 높은 인식률을 보였다.
영상분할에 사용되는 문턱치 처리 방법들 중 Otsu 방법은 클래스 내 분산(within-class variance)을 이용하여 최적의 문턱치를 자동으로 추정한다. 이때, Otsu 방법은 각 클래스(class)의 통계적 분포를 표현함에 있어 분산을 사용하며, 이러한 분산은 평균으로부터 해당 자료까지의 거리 제곱으로 표현된다. 그 결과, Otsu 방법의 최적 문턱치는 분산의 크기에 큰 영향을 받으며, 분산들 중 크기가 큰 쪽으로 편향되는 문제점을 보인다. 이에 본 논문은 분산을 표준편차로 변경함으로써 이러한 현상을 감소시켰으며, 보다 정확한 문턱치를 추정할 수 있었다. 본 논문은 기존의 클래스 분산(class variance)을 클래스 표준편차(class standard deviation)로 대체하였으며, 문턱치 선택 기준으로서 클래스 내 표준편차(within-class standard deviation)을 제안하였다. 타당성을 검증하기 위해 두 개의 정규분포 히스토그램(histogram) 및 음영이 있는 영상들에 대해 모의실험을 수행하였으며, 제안된 방법을 Otsu 방법 및 기존의 방법들과 비교하였다. 또한, 객관적 성능평가(Misclassification Error)를 통해 제안된 방법의 우수성을 확인하였다.
최근 다양한 분야에서 사진, 동영상 등과 같이 비정형 데이터를 이용한 연구가 활발하게 진행되고 있다. 이 중에서도 영상을 활용하는 연구들은 영상에 포함된 정보를 사용하기 위하여 많은 영상처리 기법들을 사용하고 있다. 에지 검출은 영상에서 정보를 추출하기 위해 많은 영상처리 응용 프로그램에서 사용되는 기본 도구이다. 그러나 잡음이 포함된 영상은 에지와 잡음이 모두 고주파 성분을 가지고 있기 때문에 에지 검출을 수행하는 것은 매우 어렵다. 본 논문은 잡음이 감소된 에지를 추출하는 방법으로 선형모형과 표준편차를 이용하였다. 화소 블록에 포함된 화소들의 표준편차와 선형모형의 적합으로 얻어진 잔차에 대한 표준편차의 차이로 에지를 검출하였다. 에지 검출의 결과는 영상처리 분야에서 대표적으로 사용되는 소벨 에지 검출기의 결과와 비교하였다. 잡음이 포함되지 않은 영상은 소벨 에지 검출 결과와 제안한 에지 검출의 결과가 유사하게 나타나고, 제안한 방법이 다양한 수준의 잡음이 추가된 영상에서 잡음에 의한 에지가 적게 나타나는 것을 확인하였다.
AI 모형을 적용한 도시지역 침수예측에 대한 연구는 꾸준히 수행되어 왔다. AI 모형을 이용해 도시침수예측을 하기 위해서는 모형에 강우자료를 학습시키게 되는데, 시계열 강우분포 자료를AI 모형의 학습자료로 사용하기에 자료의 양이 너무 많기 때문에 총 강우량만을 이용하여 도시침수예측을 수행한 바 있다(Kim et al., 2021). 하지만 총 강우량만을 AI 모형에 학습시킬 경우, 지속기간 동안 강우가 고르게 분포하는지 불규칙적으로 분포하는지에 대한 정보가 포함되지 않았기 때문에 침수예측력이 떨어질 수 있다. 따라서 본 연구에서는 시계열 강우자료의 통계치를 산정하여 AI 모형에 학습시킴으로써 강우분포특성을 고려한 침수예측을 통해 예측력을 높이고자 한다. 총 강우량만을 학습시킬 경우, 같은 지속시간에 같은 양의 강우가 내리더라도 고른 분포를 가진 강우에 의해서는 실제 침수는 작게 일어나므로 과대예측을, 전체 지속시간 중 특정 시간대에 편향된 분포를 가진 강우에 의해서는 실제 침수가 크게 일어나므로 과소예측을 하는 문제가 발생할 수 있다. 따라서 표준편차를 평균 강우량으로 나눈 값인 변동계수, 강우분포의 뾰족한 정도를 나타내는 첨도, 평균값에 대해 어느 방향으로 비대칭인지를 나타내는 왜도 값을 추가로 학습시킴으로써 시계열 강우자료 전체를 학습시키지 않고도 강우분포를 학습시키지 않았을 때 발생하는 과소·과대예측 문제를 해결할 수 있다. 또한 변동계수 대신 표준편차를 학습시키는 모형, 변동계수와 표준편차를 모두 학습시키지 않는 모형, 변동계수와 표준편차를 모두 학습시키는 모형과의 침수예측 결과 비교를 통해 표준편차와 변동계수 중 어떤 통계치를 학습시키는 것이 적합한지와 비슷한 통계치 자료를 모두 학습시켰을 때의 과적합 문제 등에 대한 결론를 얻을 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.