• Title/Summary/Keyword: 표준 강수 지수

Search Result 124, Processing Time 0.031 seconds

Projection of Temporal Trends on Drought Characteristics using the Standardized Precipitation Evapotranspiration Index (SPEI) in South Korea (표준강수증발산지수를 활용한 미래 가뭄특성의 시계열 변화전망)

  • Nam, Won-Ho;Hayes, Michael J.;Wilhite, Donald A.;Svoboda, Mark D.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.1
    • /
    • pp.37-45
    • /
    • 2015
  • Recent droughts in South Korea have had large economic and environmental impacts across the country. Changes in rainfall and hydrologic patterns due to climate change can potentially increase the occurrence of extreme droughts and affect the future availability of water resources. Therefore, it is necessary to evaluate drought vulnerability for water resources planning and management, and identify the appropriate mitigation actions to conduct a drought risk analysis in the context of climate change. The objective of this study is changes in the temporal trends of drought characteristics in South Korea to examine drought impacts under climate change. First, the changes of drought occurrence were analyzed by applying the Standardized Precipitation Evapotranspiration Index (SPEI) for meteorological data on 54 meteorological stations, and were analyzed for the past 30 years (1981-2010), and Representative Concentration Pathways (RCP) climate change scenarios (2011-2100). Second, the changes on the temporal trends of drought characteristics were performed using run theory, which was used to compare drought duration, severity, and magnitude to allow for quantitative evaluations under past and future climate conditions. These results show the high influence of climate change on drought phenomenon, and will contribute to water resources management and drought countermeasures to climate change.

The Effects of Droughts and Public Investments in Irrigation Facilities on Rice Yields in Korea (가뭄과 생산기반 정비사업이 쌀 생산성에 미치는 영향)

  • Sung, Jae-hoon;Chae, Kwang-seok;KIM, Dae-Eui
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.4
    • /
    • pp.293-303
    • /
    • 2017
  • The purpose of this study is to measure the effects of droughts and public investments in irrigation facilities on rice production. We estimated the effects of droughts and the fraction of irrigated paddy fields with irrigation facilities on rice yields through a panel regression model. The results showed that the effect of drought on rice yield was negative but modest. Also, we found that increases in the ratio of irrigated paddy fields to total paddy fields by 1% enhance rice yields by 0.025-0.035%. However, the ratio of irrigated paddy fields to total paddy fields has insignificant effects on reducing harmful droughts effects regardless of the conditions of irrigated paddy fields.

Analysis of Drought Vulnerable Areas using Neural-Network Algorithm (인공신경망 알고리즘을 활용한 가뭄 취약지역 분석)

  • Shin, Jeong Hoon;Kim, Jun Kyeong;Yeom, Min Kyo;Kim, Jin Pyeong
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.2
    • /
    • pp.329-340
    • /
    • 2021
  • Purpose: In this paper, using artificial neural network algorithm, the Korean Peninsula was analyzed for drought vulnerable areas by predicting weather data changes. Method: Monthly cumulative precipitation data were utilized for research areas considering the specific nature areas, and weather data prediction through artificial neural network algorithm was carried out using statistical program R. The predicted data were applied to the Standardized Precipitation Index (SPI) to analyze drought vulnerable areas in the Korean Peninsula. Result: In this paper, the correlation coefficient values between real and predicted data are found to be 0.043879 higher on average than the regression results, using artificial neural network algorithms. Conclusion: The results of the research are expected to be used as basic research materials for responding to drought.

Comparison of Surface Water and Groundwater Responses to Drought using the Standardized Precipitation Index (SPI) (표준강수지수(SPI)를 이용한 가뭄에 대한 지표수와 지하수 반응 비교)

  • Koo, Min-Ho;Kim, Wonkyeom;Song, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.5
    • /
    • pp.1-9
    • /
    • 2022
  • A correlation analysis was performed to investigate differences in the response of surface water and groundwater to drought using the Standardized Precipitation Index (SPI). Water level data of 20 agricultural reservoirs, 4 dams, 2 rivers, and 8 groundwater observation wells were used for the analysis. SPI was calculated using precipitation data measured at a nearby meteorological station. The water storage of reservoirs and dams decreased significantly as they responded sensitively to the drought from 2014 to 2016, showing high correlation with SPI of the relatively long accumulation period (AP). The responses of rivers varied greatly depending on the presence of an upstream dam. The water level in rivers connected to an upstream dam was predominantly influenced by the dam discharge, resulting in very weak correlation with SPI. On the contrary, the rivers without dam exhibited a sharp water level rise in response to precipitation, showing higher correlation with SPI of a short-term AP. Unlike dams and reservoirs, the responses of groundwater levels to precipitation were very short-lived, and they did not show high correlation with SPI during the long-term drought. In drought years, the rise of groundwater level in the rainy season was small, and the lowered water level in the dry season did not proceed any further and was maintained at almost the same as that of other normal years. Conclusively, it is confirmed that groundwater is likely to persist longer than surface water even in the long-term drought years.

Improvement of Radar Rainfall Estimation Using Radar Reflectivity Data from the Hybrid Lowest Elevation Angles (혼합 최저고도각 반사도 자료를 이용한 레이더 강우추정 정확도 향상)

  • Lyu, Geunsu;Jung, Sung-Hwa;Nam, Kyung-Yeub;Kwon, Soohyun;Lee, Cheong-Ryong;Lee, Gyuwon
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.109-124
    • /
    • 2015
  • A novel approach, hybrid surface rainfall (KNU-HSR) technique developed by Kyungpook Natinal University, was utilized for improving the radar rainfall estimation. The KNU-HSR technique estimates radar rainfall at a 2D hybrid surface consistings of the lowest radar bins that is immune to ground clutter contaminations and significant beam blockage. Two HSR techniques, static and dynamic HSRs, were compared and evaluated in this study. Static HSR technique utilizes beam blockage map and ground clutter map to yield the hybrid surface whereas dynamic HSR technique additionally applies quality index map that are derived from the fuzzy logic algorithm for a quality control in real time. The performances of two HSRs were evaluated by correlation coefficient (CORR), total ratio (RATIO), mean bias (BIAS), normalized standard deviation (NSD), and mean relative error (MRE) for ten rain cases. Dynamic HSR (CORR=0.88, BIAS= $-0.24mm\;hr^{-1}$, NSD=0.41, MRE=37.6%) shows better performances than static HSR without correction of reflectivity calibration bias (CORR=0.87, BIAS= $-2.94mm\;hr^{-1}$, NSD=0.76, MRE=58.4%) for all skill scores. Dynamic HSR technique overestimates surface rainfall at near range whereas it underestimates rainfall at far ranges due to the effects of beam broadening and increasing the radar beam height. In terms of NSD and MRE, dynamic HSR shows the best results regardless of the distance from radar. Static HSR significantly overestimates a surface rainfall at weaker rainfall intensity. However, RATIO of dynamic HSR remains almost 1.0 for all ranges of rainfall intensity. After correcting system bias of reflectivity, NSD and MRE of dynamic HSR are improved by about 20 and 15%, respectively.

Analysing the Relationship Between Tree-Ring Growth of Pinus densiflora and Climatic Factors Based on National Forest Inventory Data (국가산림자원조사 자료를 활용한 소나무 연륜생장과 기후인자와의 관계분석)

  • Lim, Jong-Hwan;Park, Go Eun;Moon, Na Hyun;Moon, Ga Hyun;Shin, Man Yong
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.2
    • /
    • pp.249-257
    • /
    • 2017
  • This study was conducted to analyze the relationship between tree-ring growth of Pinus densiflora and climate factors based on national forest inventory(NFI) data. Annual tree-ring growth data of P. densiflora collected by the $5^{th}$ NFI were first organized to analyze yearly growth patterns of the species. Yearly growing degree days and standard precipitation index based on daily mean temperature and precipitation data from 1951 to 2010 were calculated. Using the information, yearly temperature effect index(TEI) and precipitation effect index(PEI) were estimated to analyze the effect of climate conditions on the tree-ring growth of the species. A tree-ring growth estimation equation appropriate for P. densiflora was then developed by using the TEI and PEI as independent variables. The tree-ring growth estimation equation was finally applied to the climate change scenarios of RCP 4.5 and RCP 8.5 for predicting the changes in tree-ring growth of P. densiflora from 2011 to 2100. The results indicate that tree-ring growth of P. densiflora is predicted to be decreased over time when the tree-ring growth estimation equation is applied to the climate change scenarios of RCP 4.5 and RCP 8.5. It is predicted that the decrease of tree-ring growth over time is relatively small when RCP 4.5 is applied. On the other hand, the steep decrease of tree-ring growth was found in the application of RCP 8.5, especially after the year of 2050. The results of this study are expected to provide valuable information necessary for estimating local growth characteristics of P. densiflora and for predicting changes in tree-ring growth patterns caused by climates change.

Monitoring of Lake area Change and Drought using Landsat Images and the Artificial Neural Network Method in Lake Soyang, Chuncheon, Korea (Landsat 영상 및 인공 신경망 기법을 활용한 춘천 소양호 면적 및 가뭄 모니터링)

  • Eom, Jinah;Park, Sungjae;Ko, Bokyun;Lee, Chang-Wook
    • Journal of the Korean earth science society
    • /
    • v.41 no.2
    • /
    • pp.129-136
    • /
    • 2020
  • Drought is an environmental disaster typically defined as an unusual deficiency of water supply over an extended period. Satellite remote sensing provides an alternative approach to monitoring drought over large areas. In this study, we monitored drought patterns over about 30 years (1985-2015), using satellite imagery of Lake Soyang, Gangwondo, South Korea. Landsat images were classified using ISODATA, maximum likelihood analysis, and an artificial neural network to derive the lake area. In addition, the relationship between areas of Lake Soyang and the Standardized Precipitation Index (SPI) was analyzed. The results showed that the artificial neural network was a better method for determining the area of the lake. Based on the relationship between the SPI value and changes in area, the R2 value was 0.52. This means that the area of the lake varied depending on SPI value. This study was able to detect and monitor drought conditions in the Lake Soyang area. The results of this study are used in the development of a regional drought monitoring program.

Analysis on the Spatio-Temporal Distribution of Drought using Potential Drought Hazard Map (가뭄우심도를 활용한 가뭄의 시공간적 분포특성분석)

  • Lee, Joo Heon;Cho, Kyeong Joon;Kim, Chang Joo;Park, Min Jae
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.10
    • /
    • pp.983-995
    • /
    • 2012
  • In this study, it was intended to analyze the spatio-temporal distribution of historical drought events occurred in Korea by way of drought frequency analysis using SPI (Standardized Precipitation Index), and Drought spell was executed to estimate drought frequency as per drought severity and regions. Also, SDF (severity-duration-frequency) curves were prepared per each weather stations to estimate spatial distribution characteristics for the severe drought areas of Korea, and Potential Drought Hazard Map was prepared based on the derived SDF curves. Drought frequency analysis per drought stage revealed that severe drought as well as extreme drought frequency were prominently high at Geum River, Nakdong River, and Seomjin River basin as can be seen from SDF curves, and drought severity was found as severer per each drought return period in the data located at Geum River, Nakdong River, and Seomjin River basins as compared with that of Seoul weather station at Han River basin. In the Potential Drought Hazard Map, it showed that Geum River, Seomjin River, and Yeongsan River basins were drought vulnerable areas as compared to upper streams of Nakdong River basin and Han River basin, and showed similar result in drought frequency per drought stage. Drought was occurred frequently during spring seasons with tendency of frequent short drought spell as indicated in Potential Drought Hazard Map of different season.

Quantitative Characterization of Historical Drought Events in Korea - Focusing on Drought Frequency Analysis in the Five Major Basins - (우리나라 과거 가뭄사상의 정량적 특성 분석 -5대강 유역의 가뭄빈도분석을 중심으로-)

  • Lee, Joo-Heon;Jang, Ho-Won;Kim, Jong-Suk;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.12
    • /
    • pp.1011-1021
    • /
    • 2015
  • This study aims to investigate droughts from the magnitude perspective based on the SPI (Standardized Precipitation Index) and the theory of runs applicable to quantitative analysis of drought in South Korea. In addition, the dry spell analysis was conducted on the drought history in the five major river basins of South Korea to obtain the magnitude, duration and severity of drought, and the quantitative evaluation has been made on historical droughts by estimating the return period using the SDF (Severity-Duration-Frequency) curve gained through drought frequency analysis. The analysis results showed that the return periods for droughts at the regional and major river basin scales were clearly identified. The return periods of severe drought that occurred around the major river basins in South Korea turn out to be mostly 30 to 50 years with the years of the worst drought in terms of severity being 1988 and 1994. In particular, South Korea experienced extremely severe droughts for two consecutive years during the period between 1994 and 1995. Drought in 2014 occurred in the Han River basin and was evaluated as the worst one in terms of severity and magnitude.

Probabilistic assessment of causal relationship between drought and water quality management in the Nakdong River basin using the Bayesian network model (베이지안 네트워크 모형을 이용한 낙동강 유역의 가뭄과 수질관리의 인과관계에 대한 확률론적 평가)

  • Yoo, Jiyoung;Ryu, Jae-Hee;Lee, Joo-Heon;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.10
    • /
    • pp.769-777
    • /
    • 2021
  • This study investigated the change of the achievement rate of the target water quality conditioned on the occurrence of severe drought, to assess the effects of meteorological drought on the water quality management in the Nakdong River basin. Using three drought indices with difference time scales such as 30-, 60-, 90-day, i.e., SPI30, SPI60, SPI90, and three water quality indicators such as biochemical oxygen demand (BOD), total organic carbon (TOC), and total phosphorus (T-P), we first analyzed the relationship between severe drought occurrence water quality change in mid-sized watersheds, and identified the watersheds in which water quality was highly affected by severe drought. The Bayesian network models were constructed for the watersheds to probabilistically assess the relationship between severe drought and water quality management. Among 22 mid-sized watersheds in the Nakdong River basin, four watersheds, such as #2005, #2018, #2021, and #2022, had high environmental vulnerability to severe drought. In addition, severe drought affected spring and fall water quality in the watershed #2021, summer water quality in the #2005, and winter water quality in the #2022. The causal relationship between drought and water quality management is usufaul in proactive drought management.