본 논문에서는 가변 크기 블록 기반의 새로운 얼굴 특징 표현 방법을 제안한다. 기존 외형 기반의 얼굴 표정 인식 방법들은 얼굴 특징을 표현하기 위해 얼굴 영상 전체를 균일한 블록으로 분할하는 uniform grid 방법을 사용하는데, 이는 다음 두가지 문제를 가지고 있다. 얼굴 이외의 배경이 포함될 수 있어 표정을 구분하는 데 방해 요소로 작용하고, 각 블록에 포함된 얼굴의 특징은 입력영상 내 얼굴의 위치, 크기 및 방위에 따라 달라질 수 있다. 본 논문에서는 이러한 문제를 해결하기 위해 유의미한 표정변화가 가장 잘 나타내는 블록의 크기와 위치를 결정하는 가변 크기 블록 방법을 제안한다. 이를 위해 얼굴의 특정점을 추출하여 표정인식에 기여도가 높은 얼굴부위에 대하여 블록 설정을 위한 기준점을 결정하고 AdaBoost 방법을 이용하여 각 얼굴부위에 대한 최적의 블록 크기를 결정하는 방법을 제시한다. 제안된 방법의 성능평가를 위해 LDTP를 이용하여 표정특징벡터를 생성하고 SVM 기반의 표정 인식 시스템을 구성하였다. 실험 결과 제안된 방법이 기존의 uniform grid 기반 방법보다 우수함을 확인하였다. 특히, 제안된 방법이 형태와 방위 등의 변화가 상대적으로 큰 MMI 데이터베이스에서 기존의 방법보다 상대적으로 우수한 성능을 보여줌으로써 입력 환경의 변화에 보다 효과적으로 적응할 수 있음을 확인하였다.
본 논문에서는 실시간으로 입력되는 동영상으로부터 영상 내에 존재하는 사람의 얼굴 및 얼굴 특징점들을 자동으로 추출한 후, 추출된 정보를 이용하여 3차원 얼굴 모델의 표정을 실시간으로 제어함으로써 현실감 있는 얼굴 애니메이션 처리가 가능한 새로운 방법을 제시한다. 입력 영상의 각 프레임으로부터 얼굴을 효과적으로 추출하기 위해 기존에 일반적으로 사용되는 색상 공간을 이용한 파라미터 검출 방법에 대변되는 새로운 비파라미터 검출 방법을 제시하였다. 기존의 파라미터 검출 방법은 일반적으로 얼굴의 피부 색상분포를 가우지언 형태로 표현하며 특히 주변조명의 변화 및 배경 영상 등에 민감하게 반응하므로 정화한 영역의 검출을 위한 부가적 작업을 필요로 한다. 이러한 문제점을 효과적으로 해결하기 위하여 본 논문에서는 Hue와 Tint 색상 성분에 기반을 둔 새로운 스킨 색상 공간을 제시하고 모델의 분포특성을 직선 형식으로 표현하여 얼굴검출 시 발생되는 오류를 축소시킬 수 있었다. 또한, 검출된 얼굴 영역으로부터 정확한 얼굴특성 정보를 추출하기 위하여 각 특징영역에 대한 에지검색 결과와 얼굴의 비율 비를 적용하여 효과적으로 얼굴의 특징 영역을 검출하였다. 추출된 얼굴 특징점 변화 정보는 3차원 얼굴 모델의 실시간 표정 변화에 적용되며, 보다 실감 있는 얼굴 표정을 생성하기위하여 사람의 근육 정보와 근육의 움직이는 방법을 나타내는 Waters의 선형 근육 모델에 새로운 근육 정보들을 새롭게 추가함으로써 화장 적용하였다. 실험결과 제안된 방법을 이용하여 실시간으로 입력되는 대상의 얼굴표정을 3차원 얼굴 모델에 자연스럽게 표현할 수 있다.
본 논문에서는 6개의 특징점을 이용하는 가버 웨이블릿 신경망 기반 적응 표정인식 시스템을 제안한다. 특징 추출부를 포함하는 초기 네트워크의 구성은 Levenberg-Marquardt 기반의 학습방법이 사용되며, 따라서 특징 추출부 결정에 있어서 경험적 요소를 배재시킬 수 있다. 또한 새로운 사용자에 대한 적응 네트워크를 구성하기 위해서 개선된 보상함수를 가지는 Q-학습과, 비지도 퍼지 신경망 모델을 사용하였다. Q-학습을 통해서는 개인 사용자에 대해 분리도가 좋은 특징벡터를 얻을 수 있는 가버필터 세트를 얻을 수 있으며, 퍼지 신경망을 통해서는 사용자의 얼굴변화에 맞게 인식기를 변화시킬 수 있다. 따라서 제안된 시스템은 사용자의 얼굴변화를 따라갈 수 있는 좋은 적응 성능을 보이고 있다.
본 논문은 조명 변화에 강인하며 중립 표정과 같은 표정 측정의 기준이 되는 단서 없이 다양한 내적상태 안에서 얼굴표정을 인식할 수 있는 개선된 시스템을 제안한다. 표정정보를 추출하기 위한 전처리 작업으로, 백색화(whitening) 단계가 적용되었다. 백색화 단계는 영상데이터들의 평균값이 0이며 단위분산 값으로 균일한 분포를 갖도록 하여 조명 변화에 대한 민감도를 줄인다. 백색화 단계 수행 후 제 1 주성분이 제외된 나머지 주성분들로 이루어진 PCA표상을 표정정보로 사용함으로써 중립 표정에 대한 단서 없이 얼굴표정의 특징추출을 가능하게 한다. 본 실험 결과는 또한 83개의 내적상태와 일치되는 다양한 얼굴표정들에서 임의로 선택된 표정영상들을 내적상태의 차원모델에 기반한 얼굴표정 인식을 수행함으로써 다양하고 자연스런 얼굴 표정 인식을 가능하게 하였다.
본 논문에서는 퍼지 소속 함수와 웨이브렛 기저를 이용한 효과적인 얼굴 표정 인식 LDA 융합모델을 제안하였다. 제안된 알고리즘은 최적의 영상을 얻기 위해 퍼지 웨이브렛 알고리즘을 수행하고, 표정 검출은 얼굴 특징 추출단계와 얼굴표절인식 단계로 구성된다. 본 논문에서 얼굴 표정이 담긴 영상을 PCA를 적용하여 고차원에서 저차원의 공간으로 변환 후, LDA 특성을 이용하여 클래스 별호 특징벡터를 분류한다. LDA 융합 모델은 얼굴 표정인식단계는 제안된 LDA융합모델의 특징 벡터에 NNPC를 적응함으로서 얼굴 표정을 인식한다. 제안된 알고리즘은 6가지 기본 감정(기쁨, 화남, 놀람, 공포, 슬픔, 혐오)으로 구성된 데이터베이스를 이용해 실험한 결과, 기존알고리즘에 비해 향상된 인식률과 특정 표정에 관계없이 고른 인식률을 보임을 확인하였다.
얼굴의 표정은 얼굴의 구성요소 같은 기하학적 정보와 조명이나 주름 같은 세부적인 정보들로 표현된다. 얼굴 표정은 기하학적 변형만으로는 실감적인 표정을 생성하기 힘들기 때문에 기하학적 변형과 더불어 텍스쳐 같은 세부적인 정보도 함께 변형해야만 실감적인 표현을 할 수 있다. 표정비율이미지 (Expression Ratio Image)같은 얼굴 텍스처의 세부적인 정보를 변형하기 위한 기존 방법들은 조명에 따른 피부색의 변화를 정확히 표현할 수 없는 단점이 있다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해 서로 다른 조명 조건에서도 실감적인 표정 텍스처 정보를 적용할 수 있는 비선형 피부색 모델 기반의 표정 합성 방법을 제안한다. 제안된 방법은 동적 외양 모델을 이용한 자동적인 얼굴 특징 추출과 와핑을 통한 표정 변형 단계, 비선형 피부색 변화 모델을 이용한 표정 생성 단계, Euclidean Distance Transform (EDT)에 의해 계산된 혼합 비율을 사용한 원본 얼굴 영상과 생성된 표정의 합성 등 총 3 단계로 구성된다. 실험결과는 제안된 방법이 다양한 조명조건에서도 자연스럽고 실감적인 표정을 표현한다는 것을 보인다.
본 논문에서는 얼굴 특징을 추출하는 새로운 능동적 방식을 제안하고자 한다. 운전자의 피로 상태를 검출하기 위한 얼굴 표정 인식을 위해 얼굴 특징을 추적하고자 하였다. 그러나 대다수의 얼굴 특징 추적 방법은 다양한 조명 조건과 얼굴 움직임, 회전등으로 얼굴의 특징점이 검출하지 못하는 경우가 발생한다. 본 논문에서는 얼굴 특징을 추출하는 새로운 능동적 방식을 제안하고자 한다. 제안된 방법은 우선, 능동적 적외선 감지기를 사용하여 다양한 조명 조건하에서 동공을 검출하고, 검출된 동공은 얼굴 움직임을 예측하는데 사용되어진다. 얼굴 움직임에 따라 특징이 국부적으로 부드럽게 변화한다고 할 때, 칼만 필터로 얼굴 특징을 추적할 수 있다. 제한된 동공 위치와 칼만 필터를 동시에 사용함으로 각각의 특징 지점을 정확하게 예상할 수 있었고, Gabor 공간에서 예측 지점에 인접한 지점을 특징으로 추적할 수 있다. 패턴은 검출된 특징에서 공간적 연관성에서 추출한 특징들로 구성된다. 실험을 통하여 다양한 조명과 얼굴 방향, 표정 하에서 제안된 능동적 방법의 얼굴 추적의 실효성을 입증하였다.
본 논문에서는 얼굴 특징을 추출하는 새로운 능동적 방식을 제안하고자 한다. 운전자의 피로 상태를 검출하기 위한 얼굴 표정 인식을 위해 얼굴 특징을 추적하고자 하였다. 그러나 대다수의 얼굴 특징 추적 방법은 다양한 조명 조건과 얼굴 움직임, 회전등으로 얼굴의 특징점이 검출하지 못하는 경우가 발생한다. 그러므로 본 논문에서는 얼굴 특징을 추출하는 새로운 능동적 방식을 제안하고자 한다. 제안된 방법은 우선, 능동적 적외선 감지기를 사용하여 다양한 조명 조건 하에서 동공을 검출하고, 검출된 동공은 얼굴 움직임을 예측하는데 사용되어진다. 얼굴 움직임에 따라 특징이 국부적으로 부드럽게 변화한다고 할 때, 칼만 필터로 얼굴 특징을 추적할 수 있다. 제한된 동공 위치와 칼만 필터를 동시에 사용함으로 각각의 특징 지점을 정확하게 예상 할 수 있었고, Gabor 공간에서 예측 지점에 인접한 지점을 특징으로 추적할 수 있다. 패턴은 검출된 특징에서 공간적 연관성에서 추출한 특징들로 구성된다. 실험을 통하여 다양한 조명과 얼굴 방향, 표정 하에서 제안된 능동적 방법의 얼굴 추적의 실효성을 입증하였다.
임의 영상에서 얼굴 영역을 검출하고 얼굴 특징점 정보를 획득하는 기술은 얼굴 인식 및 표정 인식 시스템에서 중요한 역할을 한다. 본 논문은 색도 정보와 Top-hat 연산을 이용함으로써 얼굴의 유효 특징점을 효과적으로 검출할 수 있는 방법을 제안한다. 제안한 방법은 얼굴 영역 검출, 눈/눈썹 특징추출, 입술 특징추출의 세 과정으로 나눈다. 얼굴 영역은 $YC_{b}C_{r}$을 이용하여 피부색 영역을 추출한 후 모폴로지 연산과 분할을 통해 획득하고, 눈/눈썹 특징점은 BWCD(Black & White Color Distribution) 변환과 Top-hat 연산을 이용하며. 입술 특징점은 눈/눈썹과의 지정학적 상관관계와 입술 색상분포를 이용하는 방법을 사용한다. 실험을 수행한 결과. 제안한 방법이 다양한 영상에 대해서도 효과적으로 얼굴의 유효 특징점을 검출할 수 있음을 확인하였다.
스마트폰, 블랙박스, CCTV 등을 통해 다양하고 방대한 영상 데이터가 발생하고 있다. 그중에서 사람의 얼굴 영상을 통해 개인을 인식 및 식별하고 감정 상태를 분석하려는 다양한 연구가 진행되고 있다. 본 논문에서는 디지털영상처리 분야에서 널리 사용되고 있는 SIFT알고리즘을 이용하여, 얼굴영상에 대한 특징점을 추출하고 이를 기반으로 성별, 나이 및 기초적인 감정 상태를 분류할 수 있는 시스템을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.