• Title/Summary/Keyword: 표정점

Search Result 303, Processing Time 0.031 seconds

A Study on Self-Expression Improvement of Children through Orff Activities (유아의 자기표현능력 증진을 위한 오르프 음악활동의 적용)

  • Kwon, Se mi
    • Journal of Music and Human Behavior
    • /
    • v.6 no.1
    • /
    • pp.55-80
    • /
    • 2009
  • The objective of this study was to improve the self-expression of children through Orff activities. In this study, three (3) children from D day care center in Seoul who demonstrated withdrawn behaviors were chosen as research subjects, based on a self-expression test score of 50 points. The activities were conducted for 6 weeks, totaling fourteen (14) sessions, with each session being scheduled for forty (40) minutes. Across 14 sessions, the researcher conducted, analyzed and compared the self-expression scale of subjects, measured during the third and the last session. The researcher then qualitatively analyzed verbal and non-verbal self-expression behaviors of subjects by video recording the session. The analysis results shown by the study are as follows. First, the results of a quantitative analysis of the self-expression scale showed significant changes in self expression. Furthermore, the results of a qualitative analysis of verbal self-expression showed positive changes in self-perception and an increase in feelings of independence and activity than that of initial sessions.

  • PDF

3D Face Modeling based on 3D Morphable Shape Model (3D 변형가능 형상 모델 기반 3D 얼굴 모델링)

  • Jang, Yong-Suk;Kim, Boo-Gyoun;Cho, Seong-Won;Chung, Sun-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.1
    • /
    • pp.212-227
    • /
    • 2008
  • Since 3D face can be rotated freely in 3D space and illumination effects can be modeled properly, 3D face modeling Is more precise and realistic in face pose, illumination, and expression than 2D face modeling. Thus, 3D modeling is necessitated much in face recognition, game, avatar, and etc. In this paper, we propose a 3D face modeling method based on 3D morphable shape modeling. The proposed 3D modeling method first constructs a 3D morphable shape model out of 3D face scan data obtained using a 3D scanner Next, the proposed method extracts and matches feature points of the face from 2D image sequence containing a face to be modeled, and then estimates 3D vertex coordinates of the feature points using a factorization based SfM technique. Then, the proposed method obtains a 3D shape model of the face to be modeled by fitting the 3D vertices to the constructed 3D morphable shape model. Also, the proposed method makes a cylindrical texture map using 2D face image sequence. Finally, the proposed method builds a 3D face model by rendering the 3D face shape model with the cylindrical texture map. Through building processes of 3D face model by the proposed method, it is shown that the proposed method is relatively easy, fast and precise than the previous 3D face model methods.

A Study on the Effects of Visiting Companion Dog Program on People with Chronic Mental Disability (치료감호소의 만성정신장애인을 대상으로 한 반려견 방문프로그램의 효과에 관한 연구)

  • Kim, Sung-Chun;Noh, He-Len
    • Korean Journal of Social Welfare
    • /
    • v.36
    • /
    • pp.1-20
    • /
    • 1998
  • This study was conducted to find out the effects of visiting companion dog program on people with chronic mental disability. Visiting companion dog program was carried out for one hour every week for about three months between January and March of 1997 for chronic schizophrenic patients with severe negative symptoms and evaluated by the treatment team as those who are incapable of participating in any other program aside from medication. In order to measure the effects of the program PANSS: Positive and Negative Syndrome Scale was conducted by two trained evaluators. The results showed that there was a statistically significant decrease in scores of negative symtoms and general psypathological symtoms. Moreover, scaling scores reported by the nurses and occupational therapist also reveal that the patients show positive changes such as improvement in conversational interaction and facial expressions. Such results evidence that companion animals can have positive emotional and mental influence on people with chronic mental disability. Furthermore the fact that the visiting companion dog program became a program that the chronically mentally disabled who could not participate in any other program can easily participate and enjoy is a meaningful finding in and of itself.

  • PDF

Power affects emotional awareness: The moderating role of emotional intelligence and goal-relevance (정서인식과 권력의 관계: 정서지능과 목표관련성의 조절효과 검증)

  • Lee, Suran;Lee, Won Pyo;Kim, Kaeun;Youm, Joon-Kyoo;Sohn, Young Woo
    • Science of Emotion and Sensibility
    • /
    • v.16 no.4
    • /
    • pp.433-444
    • /
    • 2013
  • The purpose of this study is to investigate the moderating role of emotional intelligence (EI) and goal-relevance in the relationship between power and emotional awareness. In Study 1, participants were ask to correctly indicate presented facial expressions of others after completing EI survey. Half of the participants were randomly assigned to the "power" condition and the other half to the "powerless" condition. In Study 2, goal-relevance of expressed emotion was manipulated. The results showed that EI moderated the relationship between power and emotion decoding ability. While participants with high and low levels of EI were not significantly affected by power condition, participants with middle level of EI were strongly influenced by the effect of power. In addition, the role of goal-relevance significantly moderated the relationship between power and emotional awareness. When correctly indicating other's emotion became important and thus emotional awareness was strongly associated with participants' goal, those who had power performed better than before.

Accuracy Analysis of 3D Position of Close-range Photogrammetry Using Direct Linear Transformation and Self-calibration Bundle Adjustment with Additional Parameters (DLT와 부가변수에 의한 광속조정법을 활용한 근접사진측량의 3차원 위치정확도 분석)

  • Kim, Hyuk Gil;Hwang, Jin Sang;Yun, Hong Sic
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.2
    • /
    • pp.27-38
    • /
    • 2015
  • In this study, the 3D position coordinates were calculated for the targets using DLT and self-calibration bundle adjustment with additional parameters in close-range photogrammetry. And then, the accuracy of the results were analysed. For this purpose, the results of camera calibration and orientation parameters were calculated for each images by performing reference surveying using total station though the composition of experimental conditions attached numerous targets. To analyze the accuracy, 3D position coordinates were calculated for targets that has been identically selected and compared with the reference coordinates obtained from a total station. For the image coordinate measurement of the stereo images, we performed the ellipse fitting procedure for measuring the center point of the circular target. And then, the results were utilized for the image coordinate for targets. As a results from experiments, position coordinates calculated by the stereo images-based photogrammetry have resulted out the deviation of less than an average 4mm within the maximum error range of less than about 1cm. From this result, it is expected that the stereo images-based photogrammetry would be used to field of various close-range photogrammetry required for precise accuracy.

A Fast Digital Elevation Model Extraction Algorithm Using Gradient Correlation (Gradient Correlation을 이용한 고속 수치지형표고 모델 추출 방법)

  • Chul Soo Ye;Byung Min Jeon;Kwae Hi Lee
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.3
    • /
    • pp.250-261
    • /
    • 1998
  • The purpose of this paper is to extract fast DEM (Digital Elevation Model) using satellite images. DEM extraction consists of three parts. First part is the modeling of satellite position and attitude, second part is the matching of two images to find corresponding points of them and third part is to calculate the elevation of each point by using the results of the first and second part. The position and attitude modeling of satellite is processed by using GCPs. A area based matching method is used to find corresponding points between the stereo satellite images. The elevation of each point is calculated using the exterior orientation parameters obtained from modeling and conjugate points from matching. In the DEM generation system, matching procedure holds most of a processing time, therefore to reduce the time for matching, a new fast matching algorithm using gradient correlation and fast similarity measure calculation method is proposed. In this paper, the SPOT satellite images, level 1A 6000$\times$6000 panchromatic images are used to extract DEM. The experiment result shows the possibility of fast DEM extraction with the satellite images.

Accuracy Assessment of Aerial Triangulation of Network RTK UAV (네트워크 RTK 무인기의 항공삼각측량 정확도 평가)

  • Han, Soohee;Hong, Chang-Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.663-670
    • /
    • 2020
  • In the present study, we assessed the accuracy of aerial triangulation using a UAV (Unmanned Aerial Vehicle) capable of network RTK (Real-Time Kinematic) survey in a disaster situation that may occur in a semi-urban area mixed with buildings. For a reliable survey of check points, they were installed on the roofs of buildings, and static GNSS (Global Navigation Satellite System) survey was conducted for more than four hours. For objective accuracy assessment, coded aerial targets were installed on the check points to be automatically recognized by software. At the instance of image acquisition, the 3D coordinates of the UAV camera were measured using VRS (Virtual Reference Station) method, as a kind of network RTK survey, and the 3-axial angles were achieved using IMU (Inertial Measurement Unit) and gimbal rotation measurement. As a result of estimation and update of the interior and exterior orientation parameters using Agisoft Metashape, the 3D RMSE (Root Mean Square Error) of aerial triangulation ranged from 0.153 m to 0.102 m according to the combination of the image overlap and the angle of the image acquisition. To get higher aerial triangulation accuracy, it was proved to be effective to incorporate oblique images, though it is common to increase the overlap of vertical images. Therefore, to conduct a UAV mapping in an urgent disaster site, it is necessary to acquire oblique images together rather than improving image overlap.

Pseudo Image Composition and Sensor Models Analysis of SPOT Satellite Imagery of Non-Accessible Area (비접근 지역에 대한 SPOT 위성영상의 Pseudo영상 구성 및 센서모델 분석)

  • 방기인;조우석
    • Proceedings of the KSRS Conference
    • /
    • 2001.03a
    • /
    • pp.140-148
    • /
    • 2001
  • The satellite sensor model is typically established using ground control points acquired by ground survey Of existing topographic maps. In some cases where the targeted area can't be accessed and the topographic maps are not available, it is difficult to obtain ground control points so that geospatial information could not be obtained from satellite image. The paper presents several satellite sensor models and satellite image decomposition methods for non-accessible area where ground control points can hardly acquired in conventional ways. First, 10 different satellite sensor models, which were extended from collinearity condition equations, were developed and then the behavior of each sensor model was investigated. Secondly, satellite images were decomposed and also pseudo images were generated. The satellite sensor model extended from collinearity equations was represented by the six exterior orientation parameters in 1$^{st}$, 2$^{nd}$ and 3$^{rd}$ order function of satellite image row. Among them, the rotational angle parameters such as $\omega$(omega) and $\phi$(phi) correlated highly with positional parameters could be assigned to constant values. For non-accessible area, satellite images were decomposed, which means that two consecutive images were combined as one image. The combined image consists of one satellite image with ground control points and the other without ground control points. In addition, a pseudo image which is an imaginary image, was prepared from one satellite image with ground control points and the other without ground control points. In other words, the pseudo image is an arbitrary image bridging two consecutive images. For the experiments, SPOT satellite images exposed to the similar area in different pass were used. Conclusively, it was found that 10 different satellite sensor models and 5 different decomposed methods delivered different levels of accuracy. Among them, the satellite camera model with 1$^{st}$ order function of image row for positional orientation parameters and rotational angle parameter of kappa, and constant rotational angle parameter omega and phi provided the best 60m maximum error at check point with pseudo images arrangement.

  • PDF

Assessment of Parallel Computing Performance of Agisoft Metashape for Orthomosaic Generation (정사모자이크 제작을 위한 Agisoft Metashape의 병렬처리 성능 평가)

  • Han, Soohee;Hong, Chang-Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.427-434
    • /
    • 2019
  • In the present study, we assessed the parallel computing performance of Agisoft Metashape for orthomosaic generation, which can implement aerial triangulation, generate a three-dimensional point cloud, and make an orthomosaic based on SfM (Structure from Motion) technology. Due to the nature of SfM, most of the time is spent on Align photos, which runs as a relative orientation, and Build dense cloud, which generates a three-dimensional point cloud. Metashape can parallelize the two processes by using multi-cores of CPU (Central Processing Unit) and GPU (Graphics Processing Unit). An orthomosaic was created from large UAV (Unmanned Aerial Vehicle) images by six conditions combined by three parallel methods (CPU only, GPU only, and CPU + GPU) and two operating systems (Windows and Linux). To assess the consistency of the results of the conditions, RMSE (Root Mean Square Error) of aerial triangulation was measured using ground control points which were automatically detected on the images without human intervention. The results of orthomosaic generation from 521 UAV images of 42.2 million pixels showed that the combination of CPU and GPU showed the best performance using the present system, and Linux showed better performance than Windows in all conditions. However, the RMSE values of aerial triangulation revealed a slight difference within an error range among the combinations. Therefore, Metashape seems to leave things to be desired so that the consistency is obtained regardless of parallel methods and operating systems.

Geocoding of the Free Stereo Mosaic Image Generated from Video Sequences (비디오 프레임 영상으로부터 제작된 자유 입체 모자이크 영상의 실좌표 등록)

  • Noh, Myoung-Jong;Cho, Woo-Sug;Park, Jun-Ku;Kim, Jung-Sub;Koh, Jin-Woo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.3
    • /
    • pp.249-255
    • /
    • 2011
  • The free-stereo mosaics image without GPS/INS and ground control data can be generated by using relative orientation parameters on the 3D model coordinate system. Its origin is located in one reference frame image. A 3D coordinate calculated by conjugate points on the free-stereo mosaic images is represented on the 3D model coordinate system. For determining 3D coordinate on the 3D absolute coordinate system utilizing conjugate points on the free-stereo mosaic images, transformation methodology is required for transforming 3D model coordinate into 3D absolute coordinate. Generally, the 3D similarity transformation is used for transforming each other 3D coordinates. Error of 3D model coordinates used in the free-stereo mosaic images is non-linearly increased according to distance from 3D model coordinate and origin point. For this reason, 3D model coordinates used in the free-stereo mosaic images are difficult to transform into 3D absolute coordinates by using linear transformation. Therefore, methodology for transforming nonlinear 3D model coordinate into 3D absolute coordinate is needed. Also methodology for resampling the free-stereo mosaic image to the geo-stereo mosaic image is needed for overlapping digital map on absolute coordinate and stereo mosaic images. In this paper, we propose a 3D non-linear transformation for converting 3D model coordinate in the free-stereo mosaic image to 3D absolute coordinate, and a 2D non-linear transformation based on 3D non-linear transformation converting the free-stereo mosaic image to the geo-stereo mosaic image.