• 제목/요약/키워드: 표정요소

검색결과 266건 처리시간 0.022초

Gradient Correlation을 이용한 고속 수치지형표고 모델 추출 방법 (A Fast Digital Elevation Model Extraction Algorithm Using Gradient Correlation)

  • Chul Soo Ye;Byung Min Jeon;Kwae Hi Lee
    • 대한원격탐사학회지
    • /
    • 제14권3호
    • /
    • pp.250-261
    • /
    • 1998
  • 본 논문에서는 위성 영상을 이용하여 고속으로 수치지형표고 모델을 추출하기 위한 방법을 제안한다. 수치지형표고 모델 추출 방법은 위성의 위치와 자세를 계산하는 카메라 모델링 과정, 스테레오 영상으로부터 동일점을 찾아내는 정합과정 그리고 외부 표정 요소와 정합쌍을 이용하여 고도 정보를 추출하는 고도 정보 계산 과정으로 크게 구분된다. 이 중 정합 과정은 대상 영상의 모든 영역에 대하여 수행되므로 계산량이 많고, 수치지형표고 모델 추출 과정의 대부분의 수행시간을 점유한다. 따라서 본 논문에서는 수치지형표고 모델 추출 과정 중 대부분의 수행시간을 차지하는 정합 기법의 속도 향상을 통하여 수치지형표고 모델 제작 시간을 단축 시킨다. 본 논문에서 제안한 정합 기법의 속도 향상 방법은 두 가지로 분류된다. 첫째는 일반적으로 많이 사용되는 유사함수인 정규상관계수(NCC: Normalized Cross Correlation)에 비해 계산량이 적은 고속 GC(Gradient Correlation)을 사용한다. 둘째는 동일점을 찾기 위하여 사용되는 정합 창틀을 계산할 때, 이전에 미리 계산된 값을 이용하여 계산량을 감소시킨다. 실험에 사용한 입력 영상은 6000$\times$6000 크기의 충청 지역 level 1A SPOT위성 쌍의 일부분이다 실험 결과 기존의 수치지형표고 모델 추출 방법과 유사한 성능을 보이며 수행시간이 단축되는 것을 확인하였다.

사진측량과 컴퓨터비전 간의 카메라 렌즈왜곡 변환 (Conversion of Camera Lens Distortions between Photogrammetry and Computer Vision)

  • 홍송표;최한승;김의명
    • 한국측량학회지
    • /
    • 제37권4호
    • /
    • pp.267-277
    • /
    • 2019
  • 사진측량과 컴퓨터비전 분야는 카메라에서 촬영된 영상에서 3차원 좌표를 결정하는 것은 동일하지만 두 분야는 카메라 렌즈왜곡 모델링 방법과 카메라 좌표계의 차이점으로 인하여 서로 간에 직접적인 호환이 어렵다. 일반적으로 드론 영상의 자료처리는 컴퓨터비전 기반의 소프트웨어를 이용하여 번들블록조정을 수행한 후 지도제작을 위해서 사진측량 기반의 소프트웨어로 도화를 수행하게 된다. 이때 카메라 렌즈왜곡의 모델을 사진측량에서 사용하는 수식으로 변환해야 하는 문제에 직면하게 된다. 이에 본 연구에서는 사진측량과 컴퓨터비전에서 사용되는 좌표계와 렌즈왜곡 모델식의 차이점에 대하여 기술하고 이를 변환하는 방법론을 제안하였다. 카메라 렌즈왜곡 모델의 변환식의 검증을 위해서 먼저 렌즈왜곡이 없는 가상의 좌표에 컴퓨터비전 기반의 렌즈왜곡 모델을 이용하여 렌즈왜곡을 부여하였다. 그리고 나서 렌즈왜곡이 부여된 사진좌표를 이용하여 사진측량 기반의 렌즈왜곡 모델을 이용하여 왜곡계수를 결정한 후 사진좌표에서 렌즈왜곡을 제거하여 원래의 왜곡이 없는 가상좌표와 비교하였다. 그 결과 평균제곱근거리가 0.5픽셀 이내로 양호한 것으로 나타났다. 또한 사진측량용 렌즈왜곡 계수를 적용하여 정밀도화 가능여부를 판단하기 위해서 에피폴라 영상을 생성하였다. 생성된 에피폴라 영상에서 y-시차의 평균제곱근오차가 계산한 결과 0.3픽셀 이내로 양호하게 나타났음을 알 수 있었다.

건설현장 모니터링을 위한 단안 카메라 기반의 소실점을 이용한 높이 결정 (Height Determination Using Vanishing Points of a Single Camera for Monitoring of Construction Site)

  • 최인하;소형윤;김의명
    • 지적과 국토정보
    • /
    • 제51권2호
    • /
    • pp.73-82
    • /
    • 2021
  • 정부의 중·소형 민간공사장 안전관리 강화대책 발표에 따라 CCTV 설치 의무화 대상이 대형 공사장에서 중·소형 공사장으로 확대되었다. 하지만 기존의 건설현장의 CCTV는 안전관리를 위한 단순 관제용으로 활용되고 있어 건설현장의 모니터링을 위한 연구가 필요하다. 이에 본 연구에서는 단안 카메라를 이용하여 촬영한 단 영상을 기반으로 3개의 소실점(vanishing point)을 계산한 후 내부표정요소 정보를 포함하고 있는 카메라 행렬을 결정하고 기준 객체의 높이를 통해 대상 객체의 높이를 계산하여 정확도를 검증하는 연구를 수행하였다. 단안 카메라 기반의 소실점을 이용한 높이 결정 실험을 통해 별도의 지상기준점 측량 없이 단 영상만으로 대상 객체의 높이를 결정할 수 있었으며, 정확도를 평가한 결과 평균제곱근오차는 ±0.161m로 나타났다. 따라서, 단안 카메라를 이용하여 촬영한 단영상을 통해 건설현장의 공사 진척도를 모니터링할 수 있을 것으로 판단된다.

TV뉴스 시청자의 집중도 향상을 위한 조명 기법의 사례 연구 -KBS 9시 뉴스 조명 기법 분석을 중심으로- (Case study of Lighting method to improve TV news viewers' attention span -Based on KBS News 9 Lighting Method Analysis-)

  • 한학수
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권12호
    • /
    • pp.97-107
    • /
    • 2009
  • TV뉴스는 매일 전 세계의 소식을 불특정 다수에게 전달함으로써 시청자의 정보 해석에 중요한 영향을 미친다. 방송환경의 급격한 변화로 HDTV로 불리는 고화질 시대에 앵커의 미세한 표정과 옷차림까지 들춰질 수 있는 시각적인 집중도가 있는 점을 감안할 때, 해상도에 더욱 신경을 써야하는 세심함이 요구된다. 따라서 HDTV에 더욱 중요한 조명 기술이 가지는 표현의 미는 강조의 여지가 없다. 보도방송에서도 이러한 변화추세에 따른 현상으로, TV 뉴스 제작 행태는 DLP(Digital Lighting Processing)나 LED(Light Emitting Diode)기법을 통해서, 기존 TV뉴스 제작 행태를 탈피하고자 하는 변화의 길을 모색해 왔다. 이와 같은 노력은 HDTV에 적합한 화질을 구현하는데 기여하였다. 요즈음 디지털영상에서는 조명 장치만을 사용하던 기존 아날로그 기반의 조명 환경이 IT기술의 발전과 더불어 디지털화된 조명 장비의 개발로 TV뉴스 제작행태에 활력을 불어 넣고 있다. 이러한 변화는 HDTV 스튜디오 구축과 세트 및 조명 시스템을 설비하기에 이르렀다 1990년대 이후, HDTV의 등장으로 필름 세트와 스크린에 영상을 투사하는 프로젝터와 최근 들어 그 활용도가 커진 PDP, LCD, DLP등이 있으며, 뉴스 외에 다른 프로그램에서 자주사용되는 LED 배경화면이 그 예이다. 본 논문은 이러한 방송환경 변화에 따라 텔레비전 영상 구성 요소가 TV뉴스 시청자의 화면 집중도에 미치는 영향을 탐색하기 위해서 KBS9시 뉴스의 조명 기법을 분석하였다. 분석 결과를 토대로 앵커가 정보를 전달하는데 있어서 앵커 이미지 형성의 범주를 조명 기법으로 제안한다.

딥러닝에 의한 라이다 반사강도로부터 엄밀정사영상 생성 (True Orthoimage Generation from LiDAR Intensity Using Deep Learning)

  • 신영하;형성웅;이동천
    • 한국측량학회지
    • /
    • 제38권4호
    • /
    • pp.363-373
    • /
    • 2020
  • 정사영상 생성을 위한 많은 연구들이 진행되어 왔다. 기존의 방법은 정사영상을 제작할 경우, 폐색지역을 탐지하고 복원하기 위해 항공영상의 외부표정요소와 정밀 3D 객체 모델링 데이터가 필요하며, 일련의 복잡한 과정을 자동화하는 것은 어렵다. 본 논문에서는 기존의 방법에서 탈피하여 딥러닝(DL)을 이용하여 엄밀정사영상을 제작하는 새로운 방법을 제안하였다. 딥러닝은 여러 분야에서 더욱 급속하게 활용되고 있으며, 최근 생성적 적대 신경망(GAN)은 영상처리 및 컴퓨터비전 분야에서 많은 관심의 대상이다. GAN을 구성하는 생성망은 실제 영상과 유사한 결과가 생성되도록 학습을 수행하고, 판별망은 생성망의 결과가 실제 영상으로 판단될 때까지 반복적으로 수행한다. 본 논문에서 독일 사진측량, 원격탐사 및 공간정보학회(DGPF)가 구축하고 국제 사진측량 및 원격탐사학회(ISPRS)가 제공하는 데이터 셋 중에서 라이다 반사강도 데이터와 적외선 정사영상을 GAN기반의 Pix2Pix 모델 학습에 사용하여 엄밀정사영상을 생성하는 두 가지 방법을 제안하였다. 첫 번째 방법은 라이다 반사강도영상을 입력하고 고해상도의 정사영상을 목적영상으로 사용하여 학습하는 방식이고, 두 번째 방법에서도 입력영상은 첫 번째 방법과 같이 라이다 반사강도영상이지만 목적영상은 라이다 점군집 데이터에 칼라를 지정한 저해상도의 영상을 이용하여 재귀적으로 학습하여 점진적으로 화질을 개선하는 방법이다. 두 가지 방법으로 생성된 정사영상을 FID(Fréchet Inception Distance)를 이용하여 정량적 수치로 비교하면 큰 차이는 없었지만, 입력영상과 목적영상의 품질이 유사할수록, 학습 수행 시 epoch를 증가시키면 우수한 결과를 얻을 수 있었다. 본 논문은 딥러닝으로 엄밀정사영상 생성 가능성을 확인하기 위한 초기단계의 실험적 연구로서 향후 보완 및 개선할 사항을 파악할 수 있었다.

MMS 점군 데이터를 이용한 CCTV의 실질적 감시영역 추출 (Creation of Actual CCTV Surveillance Map Using Point Cloud Acquired by Mobile Mapping System)

  • 최원준;박소연;최윤조;홍승환;김남훈;손홍규
    • 대한원격탐사학회지
    • /
    • 제37권5_3호
    • /
    • pp.1361-1371
    • /
    • 2021
  • 스마트 시티 서비스 중 방범·방재 분야가 2018년 기준 가장 높은 24%를 차지하고 있으며, 실시간 상황정보제공에 가장 중요한 플랫폼은 CCTV(Closed-Circuit Television) 이다. 이러한 CCTV의 활용을 극대화 하기 위해서는 CCTV가 제공하는 실질적인 감시 영역을 파악하는 것이 필수적이다. 하지만 국내에 설치된 CCTV양은 지자체 관리대상 포함 100만대를 넘고 있다. 이러한 방대한 양의 CCTV의 가시영역을 수동적으로 파악해야 하는 것은 문제점으로 제기되고 있다. 이에 본 연구에서는 CCTV의 실질적 가시권 영역 데이터를 효율적으로 구축하고, 관리자가 상황 파악에 소요되는 시간을 단축하는 방안을 제시하고자 하였다. 이를 위하여 첫째, 접근이 어려운 기 설치된 CCTV 카메라의 외부표정요소와 초점 거리를 MMS(Mobile Mapping System)의 점군 데이터를 활용하여 계산하고, 이 결과를 활용하여 FOV(Field of View)를 계산하였다. 둘째, 첫 단계에서 계산된 FOV 결과를 이용하여 건물에 의하여 발생하는 폐색 영역을 고려하여 CCTV의 실질적 감시 영역을 그리드 단위 1 m, 2 m, 3 m, 5 m, 10 m 폴리곤 데이터로 구축하였다. 이 방법을 경상북도 울진군에 위치한 5개소의 CCTV 영상에 적용한 결과, 평균 재투영 오차는 약 9.31 pixel, 공공데이터포털(Data Portal)에서 제공하는 위·경도 좌표와의 거리는 평균 약 10 m의 거리 차이가 발생하였고, MMS를 통해 취득한 점군 데이터 상의 CCTV 위치 좌표 값과는 평균 약 1.688 m의 위치 차이를 나타냈다. 단위 그리드의 한 변의 크기가 3 m인 경우, 본 연구를 통하여 계산된 감시 영역 폴리곤은 육안으로 확인한 실제 감시 영역과 최소 70.21%에서 최대 93.82%까지 일치함을 확인할 수 있었다.