• Title/Summary/Keyword: 표적체적

Search Result 112, Processing Time 0.036 seconds

Analysis of the Causes of Subfrontal Recurrence in Medulloblastoma and Its Salvage Treatment (수모세포종의 방사선치료 후 전두엽하방 재발된 환자에서 원인 분석 및 구제 치료)

  • Cho Jae Ho;Koom Woong Sub;Lee Chang Geol;Kim Kyoung Ju;Shim Su Jung;Bak Jino;Jeong Kyoungkeun;Kim Tae_Gon;Kim Dong Seok;Choi oong-Uhn;Suh Chang Ok
    • Radiation Oncology Journal
    • /
    • v.22 no.3
    • /
    • pp.165-176
    • /
    • 2004
  • Purpose: Firstly, to analyze facto in terms of radiation treatment that might potentially cause subfrontal relapse in two patients who had been treated by craniospinal irradiation (CSI) for medulloblastoma, Secondly, to explore an effective salvage treatment for these relapses. Materials and Methods: Two patients who had high-risk disease (T3bMl, T3bM3) were treated with combined chemoradiotherapy CT-simulation based radiation-treatment planning (RTP) was peformed. One patient who experienced relapse at 16 months after CSI was treated with salvage surgery followed by a 30.6 Gy IMRT (intensity modulated radiotherapy). The other patient whose tumor relapsed at 12 months after CSI was treated by surgery alone for the recurrence. To investigate factors that might potentially cause subfrontal relapse, we evaluated thoroughly the charts and treatment planning process including portal films, and tried to find out a method to give help for placing blocks appropriately between subfrotal-cribrifrom plate region and both eyes. To salvage subfrontal relapse in a patient, re-irradiation was planned after subtotal tumor removal. We have decided to treat this patient with IMRT because of the proximity of critical normal tissues and large burden of re-irradiation. With seven beam directions, the prescribed mean dose to PTV was 30.6 Gy (1.8 Gy fraction) and the doses to the optic nerves and eyes were limited to 25 Gy and 10 Gy, respectively. Results: Review of radiotherapy Portals clearly indicated that the subfrontal-cribriform plate region was excluded from the therapy beam by eye blocks in both cases, resulting in cold spot within the target volume, When the whole brain was rendered in 3-D after organ drawing in each slice, it was easier to judge appropriateness of the blocks in port film. IMRT planning showed excellent dose distributions (Mean doses to PTV, right and left optic nerves, right and left eyes: 31.1 Gy, 14.7 Gy, 13.9 Gy, 6.9 Gy, and 5.5 Gy, respectively. Maximum dose to PTV: 36 Gy). The patient who received IMRT is still alive with no evidence of recurrence and any neurologic complications for 1 year. Conclusion: To prevent recurrence of medulloblastoma in subfrontal-cribriform plate region, we need to pay close attention to the placement of eye blocks during the treatment. Once subfrontal recurrence has happened, IMRT may be a good choice for re-irradiation as a salvage treatment to maximize the differences of dose distributions between the normal tissues and target volume.

The 3-Dimensional Analysis of the Efficacy of a Belly-Board Device for the Displacement of Small Bowel During Pelvic Irradiation (골반강 방사선치료 중 소장의 이동을 위한 벨리보드의 효과에 대한 3차원적 분석)

  • Lee, Kyung-Ja
    • Radiation Oncology Journal
    • /
    • v.26 no.4
    • /
    • pp.271-279
    • /
    • 2008
  • Purpose: To evaluate the efficacy of a belly-board device (BBD) in reducing the volume of small bowel during four-field pelvic irradiation. Materials and Methods: Twenty-two cancer patients (14 uterine cervical cancer, 6 rectal cancer, and 2 endometrial cancer) scheduled to receive pelvic irradiation were selected for this study. Two sets of CT images were taken with and without the belly-board device using the Siemens 16 channel CT scanner. All patients were set in the prone position. The CT images were transferred to a treatment planning system for dose calculation and volume measurements. The external surfaces of small bowel and the bladder were contoured on all CT scans and the 4-pelvic fields were added. The dose-volume-histogram of the bladder and small bowel, with and without the BBD, were plotted and analyzed. Results: In all patients, the total small bowel volume included in the irradiated fields was reduced when the BBD was used. The mean volume reduction was 35% (range, $1{\sim}79%$) and was statistically significant (p<0.001). The reduction in small bowel volume receiving $10{\sim}100%$ of the prescribed dose was statistically significant when the BBD was used in all cases. Almost no change in the total bladder volume involved was observed in the field (<8 cc, p=0.762). However, the bladder volume receiving 90% of the prescribed dose was 100% in 15/22 patients (68%) and $90{\sim}99%$ in 7/22 patients (32%) with the BBD. In comparison, the bladder volume receiving 90% of the prescribed dose was 100% in 10/22 patients (45%), $90{\sim}99%$ in 7/22 patients (32%), and $80{\sim}89%$ in 5/22 patients (23%) without the BBD. When the BBD was used, an increase in the bladder volume receiving a high dose range was observed Conclusion: This study shows that the use of a BBD for the treatment of cancer in the pelvic area significantly improves small bowel sparing. However, since the BBD pushed the bladder into the treatment field, the bladder volume receiving the high dose could increase. Therefore it is recommended to be considerate in using the BBD when bladder damage is of concern.

A Study on the dose distribution produced by $^{32}$ P source form in treatment for inhibiting restenosis of coronary artery (관상동맥 재협착 방지를 위한 치료에서 $^{32}$ P 핵종의 선원 형태에 따른 선량분포에 관한 연구)

  • 김경화;김영미;박경배
    • Progress in Medical Physics
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 1999
  • In this study, the dose distributions of a $^{32}$ p uniform cylindrical volume source and a surface source, a pure $\beta$emitter, were calculated in order to obtain information relevant to the utilization of a balloon catheter and a radioactive stent. The dose distributions of $^{32}$ p were calculated by means of the EGS4 code system. The sources are considered to be distributed uniformly in the volume and on the surface in the form of a cylinder with a radius of 1.5 mm and length of 20 mm. The energy of $\beta$particles emitted is chosen at random in the $\beta$ energy spectrum evaluated by the solution of the Dirac equation for the Coulomb potential. Liquid water is used to simulate the particle transport in the human body. The dose rates in a target at a 0.5mm radial distance from the surface of cylindrical volume and surface source are 12.133 cGy/s per GBq (0.449 cGy/s per mCi, uncertainty: 1.51%) and 24.732 cGy/s per GBq (0.915 cGy/s per mCi, uncertainty: 1.01%), respectively. The dose rates in the two sources decrease with distance in both radial and axial direction. On the basis of the above results, the determined initial activities were 29.69 mCi and 1.2278 $\mu$Ci for the balloon catheter and the radioactive stent using $^{32}$ P isotope, respectively. The total absorbed dose for optimal therapeutic regimen is considered to be 20 Gy and the treatment time in the case of the balloon catheter is less than 3 min. Absorbed doses in targets placed in a radial direction for the two sources were also calculated when it expressed initial activity in a 1 mCi/ml volume activity density for the cylindrical volume source and a 0.1 mCi/cm$^2$ area activity density for the surface source. The absorbed dose distribution around the $^{32}$ P cylindrical source with different size can be easily calculated using our results when the volume activity density and area activity density for the source are known.

  • PDF

The Usefulness of Integrated PET/CT Simulator for Non-Small Cell Lung Cancer Using the F-18 Fluoro-2-deoxyglucose (FDG) (포도당 유도체 불소화합물(FDG)을 이용한 비소세포폐암의 Integrated PET/CT 전산화 모의치료기에 대한 유용성 평가)

  • Na, Jong Eok;Suh, Jeong Nam;Kim, Jin Soo;Kim, Dae Seob;Hong, Dong Ki;Baek, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.1
    • /
    • pp.41-47
    • /
    • 2013
  • Purpose: To evaluate the usefulness of Integrated PET/CT and compare the gloss tumor volume (GTV) identified on CT, PET, PET/CT to that obtained from fluorodeoxyglucose (FDG). Materials and Methods: This experimental study was obtained using GE Discovery 690 (General Electric Healthcare, Milwaukee, MI, USA) PET/CT simulator with Gammex Laser System for five non-small cell lung cancer (NSCLC) patients. In order to increase the reproducibility of the patient setup, We have to fixed to patients using the Extended Wing Board. GTV delineation was painted using the EclipseTM ver.10 contouring program for CT, PET, PET/CT images. And then, We were to compare the changes in the GTV. Results: These results are drawn from 5 patients who have atelectasis or pneumonitis. Compared to CT defined GTV, PET was decreased by 10.5%, 11.8% and increased by 67.9%, 220%, 19.4%. PET/CT was decreased by 7.7%, 6.7%, 28% and increased by 232%, 24%. Conclusion: We were able to determine the usefulness of PET/CT simulator for NSCLC. PET/CT simulator in radiation therapy is useful to define the target volume and It is possible to delineate Objective and accurate target volume. It seems to be applicable to other areas in the near future.

  • PDF

A Study on Treatment Target Position Verification by using Electronic Portal Imaging Device & Fractionated Stereotatic Radiotherapy (EPID와 FSRT를 이용한 치료표적위치 검증에 관한 연구)

  • Lee, Dong-Hoon;Kwon, Jang-Woo;Park, Seung-Woo;Kim, Yoon-Jong;Lee, Dong-Han;Ji, Young-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.3
    • /
    • pp.44-51
    • /
    • 2009
  • It is very important to verify generated setup errors in cancer therapy by using a high energy radiation and to perform the precise radiation therapy. Specially, the verification of treatment position is very crucial in special therapies like fractionated stereotatic radiotherapy (FSRT). The FSRT uses normally high-dose, small field size for treating small intracranial lesions. To estimate the developed FSRT system, the isocenter accuracy of gantry, couch and collimator were performed and a total of inaccuracy was less than ${\pm}1mm$. Precise beam targeting is crucial when using high-dose, small field size FSRT for treating small intracranial lesions. The EPID image of the 3mm lead ball mounted on the isocenter with a 25mm collimator cone was acquired and detected to the extent of one pixel (0.76mm) after comparing the difference between the center of a 25mm collimator cone and a 3 mm ball after processing the EPID image. In this paper, the radiation treatment efficiency can be improved by performing precise radiation therapy with a developed video based EPID and FSRT at near real time

The Study of Dose Variation and Change of Heart Volume Using 4D-CT in Left Breast Radiation Therapy (좌측 유방 방사선치료 시 4D-CT를 이용한 심장의 체적 및 선량변화에 대한 연구)

  • Park, Seon Mi;Cheon, Geum Seong;Heo, Gyeong Hun;Shin, Sung Pil;Kim, Kwang Seok;Kim, Chang Uk;Kim, Hoi Nam
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.2
    • /
    • pp.187-192
    • /
    • 2013
  • Purpose: We investigate the results of changed heart volume and heart dose in the left breast cancer patients while considering the movements of respiration. Materials and Methods: During the months of March and May in 2012, we designated the 10 patients who had tangential irradiation with left breast cancer in the department of radiation Oncology. With acquired images of free breathing pattern through 3D and 4D CT, we had planed enough treatment filed for covered up the whole left breast. It compares the results of the exposed dose and the volume of heart by DVH (Dose Volume histogram). Although total dose was 50.4 Gy (1.8 Gy/28 fraction), reirradiated 9 Gy (1.8 Gy/5 Fraction) with PTV (Planning Target Volume) if necessary. Results: It compares the results of heart volume and heart dose with the free breathing in 3D CT and 4D CT. It represents the maximum difference volume of heart is 40.5%. In addition, it indicated the difference volume of maximum and minimum, average are 8.8% and 27.9%, 37.4% in total absorbed dose of heart. Conclusion: In case of tangential irradiation (opposite beam) in left breast cancer patients, it is necessary to consider the changed heart volume by the respiration of patient and the heartbeat of patient.

  • PDF

Studies on Estimation of Fish Abundance Using an Echo Sounder ( 1 ) - Experimental Verification of the Theory for Estimating Fish Density- (어군탐지기에 의한 어군량 추정에 관한 기초적 연구 ( 1 ) - 어군량추정이론의 검증실험 -)

  • 이대재
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.1
    • /
    • pp.1-12
    • /
    • 1991
  • An experiment has been carefully designed and performed to verify the theory for the echointergration technique of estimating the density of fish school by the use of steel spheres in a laboratory tank. The spheres used to simulate a fish school were randomly distributed throughout the insonified volume to produce the acoustic echoes similar to those scattered from real fish schools. The backscattered echoes were measured as a function of target density at tow frequencies of 50kHz and 200kHz. Data acquisition, processing and analysis were performed by means of the microcomputer-based sonar-echo processor including a FFT analyzer. Acoustic scattering characteristics of a 36cm mackerel was investigated by measuring fish echoes with frequencies ranging from 47.8kHz to 52.0kHz. The fluctuation of bottom echoes caused by the effects of fish-school attenuation and multiple scattering which occurred in dense aggregations of fishes was also examined by analyzing the echograms of sardine schools obtained by a 50kHz telesounder in the set-net's bagnet, and the echograms obtained by a scientific echo sounder of 50kHz in the East China Sea, respectively. The results obtained can be summarized as follows: 1. The measured and the calculated echo shapes on the steel sphere used to simulate a fish school were in close agreement. 2. The waveform and amplitude of echo signals by a mackerel without swimbladder fluctuated irregularly with the measuring frequency. 3. When a collection of 30 targets/m super(3) lied the shadow region behind another collection of 5 targets/m super(3), the mean losses in echo energy for the 30 targets/m super(3) were about -0.4dB at 50kHz and about -0.2dB at 200kHz, respectively. 4. In the echograms obtained in the East China Sea, the bottom echoes fluctuated remarkably when the dense aggregations of fish appeared between transducer and seabed. Especially, in the case of the echograms of sardine school obtained in a set-net's bagnet, the disappearance of bottom echoes and the lengthening of the echo trace by fish aggregations were observed. Then the mean density of the sardine school was estimated as 36 fish/m super(3). It suggests that when the distribution density of fishes in oceans is greater than this density, the effects of fish-school attenuation and multiple scattering must be taken into account as a possible source of error in fish abundance estimates. 5. The relationship between mean backscattering strength (, dB) and target density ($\rho$, No./m super(3)) were expressed by the equations: =-46.2+13.7 Log($\rho$) at 50kHz and =-43.9+13.4 Log($\rho$) at 200kHz. 6. The difference between the experimentally derived number and the actual number of targets gradually decreased with an increase in the target density and was within 20% when the density was 30 targets/m super(3). From these results, we concluded that when the number of targets in the insonified volume is large, the validity of the echo-integration technique of estimating the density of fish schools could be expected.

  • PDF

Dose Planning of Forward Intensity Modulated Radiation Therapy for Nasopharyngeal Cancer using Compensating Filters (보상여과판을 이용한 비인강암의 전방위 강도변조 방사선치료계획)

  • Chu Sung Sil;Lee Sang-wook;Suh Chang Ok;Kim Gwi Eon
    • Radiation Oncology Journal
    • /
    • v.19 no.1
    • /
    • pp.53-65
    • /
    • 2001
  • Purpose : To improve the local control of patients with nasopharyngeal cancer, we have implemented 3-D conformal radiotherapy and forward intensity modulated radiation therapy (IMRT) to used of compensating filters. Three dimension conformal radiotherapy with intensity modulation is a new modality for cancer treatments. We designed 3-D treatment planning with 3-D RTP (radiation treatment planning system) and evaluation dose distribution with tumor control probability (TCP) and normal tissue complication probability (NTCP). Material and Methods : We have developed a treatment plan consisting four intensity modulated photon fields that are delivered through the compensating tilters and block transmission for critical organs. We get a full size CT imaging including head and neck as 3 mm slices, and delineating PTV (planning target volume) and surrounding critical organs, and reconstructed 3D imaging on the computer windows. In the planning stage, the planner specifies the number of beams and their directions including non-coplanar, and the prescribed doses for the target volume and the permissible dose of normal organs and the overlap regions. We designed compensating filter according to tissue deficit and PTV volume shape also dose weighting for each field to obtain adequate dose distribution, and shielding blocks weighting for transmission. Therapeutic gains were evaluated by numerical equation of tumor control probability and normal tissue complication probability. The TCP and NTCP by DVH (dose volume histogram) were compared with the 3-D conformal radiotherapy and forward intensity modulated conformal radiotherapy by compensator and blocks weighting. Optimization for the weight distribution was peformed iteration with initial guess weight or the even weight distribution. The TCP and NTCP by DVH were compared with the 3-D conformal radiotherapy and intensitiy modulated conformal radiotherapy by compensator and blocks weighting. Results : Using a four field IMRT plan, we have customized dose distribution to conform and deliver sufficient dose to the PTV. In addition, in the overlap regions between the PTV and the normal organs (spinal cord, salivary grand, pituitary, optic nerves), the dose is kept within the tolerance of the respective organs. We evaluated to obtain sufficient TCP value and acceptable NTCP using compensating filters. Quality assurance checks show acceptable agreement between the planned and the implemented MLC(multi-leaf collimator). Conclusion : IMRT provides a powerful and efficient solution for complex planning problems where the surrounding normal tissues place severe constraints on the prescription dose. The intensity modulated fields can be efficaciously and accurately delivered using compensating filters.

  • PDF

Locally Advanced, Unresectable Pancreatic Cancer Treated by Stereotactic Radiation Therapy (국소적으로 진행된, 절제 불가능한 췌장암에서 정위 방사선 치료)

  • Choi Chul-Won;Kim Mi-Sook;Cho Chul-Koo;Yoo Seong-Yul;Yang Kwang-Mo;Yoo Hyung-Jun;Lee Dong-Han;Ji Young-Hoon;Han Chul-Ju;Kim Jin;Kim Young-Han
    • Radiation Oncology Journal
    • /
    • v.24 no.1
    • /
    • pp.11-20
    • /
    • 2006
  • Puroose: In order to find out whether stereotactic radiation therapy (RT) using CyberKnife (CK) could improve survival rate and lower acute toxicity compared to conventional RT. Materials and Methods: From April 2003 through April 2004, 19 patients with Eastern Cooperative Oncology Group (ECOG) performance status ${\leq}3$ and locally advanced pancreas cancer without distant metastasis, evaluated by CT or PET/CT, were included. We administered stereotactic RT consisting of either 33 Gy, 36 Gy or 39 Gy in 3 fractions to 6, 4 and 9 patients, respectively, in an effort to increase the radiation dose step by step, and analyzed the survival rate and gastrointestinal toxicities by the acute radiation morbidity criteria of Radiation Therapeutic Oncology Group (RTOG). Prognostic factors of age, sex, ECOG performance score, chemotherapy, bypass surgery, radiation dose, CA 19-9, planning target volume (PTV), and adjacent organ and vessel invasion on CT scan were evaluated by Log Rank test. Results: The median survival time was 11 months with 1-year survival rate of 36.8%. During follow-up period (range $3{\sim}20$ months, median 10 months), no significant gastrointestinal acute toxicity (RTOG grade 3) was observed. In univariate analysis, age, sex, ECOG performance score, chemotherapy, bypass surgery, radiation dose, CA 19-9 level, and adjacent organ and vessel invasion did not show any significant changes of survival rate, however, patients with PTV (80 cc showed more favorable survival rate than those with PTV>80 cc (p-value<0.05). In multivariate analysis, age younger than 65 years and PTV>80 cc showed better survival rate. Conclusion: In terms of survival, the efficacy of stereotactic radiation therapy using CK was found to be superior or similar to other recent studies achieved with conventional RT with intensive chemotherapy, high dose conformal RT, intraoperative RT (IORT), or intensity modulated RT (IMRT). Furthermore, severe toxicity was not observed. Short treatment time in relation to the short life expectancy gave patients more convenience and, finally, quality of life would be increased. Consequently, this could be regarded as an effective novel treatment modality for locally advanced, unresectable pancreas cancer. PTV would be a helpful prognostic factor for CK.

Comparison of the Dose Distributions with Beam Arrangements in the Stereotactic Body Radiotherapy (SBRT) for Primary Lung Cancer (원발성 폐암에서 정위적 체부 방사선치료의 빔 배열에 따른 선량분포의 비교)

  • Yea, Ji Woon
    • Progress in Medical Physics
    • /
    • v.25 no.2
    • /
    • pp.110-115
    • /
    • 2014
  • To compare 2 beam arrangements, circumferential equally angles (EA) beams or partially angles (PA) beams for stereotactic body radiation therapy (SBRT) of primary lung cancer for intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) delivery techniques with respect to target, ipsilateral lung, contralateral lung, and organs-at-risk (OAR) dose-volume metrics, as well as treatment delivery efficiency. Data from 12 patients, four treatment plans were generated per data sets ($IMRT_{EA}$, $IMRT_{PA}$, $VMAT_{EA}$, $VMAT_{PA}$). The prescribed dose (PD) was 60 Gy in 4 fractions to 95% of the planning target volume (PTV) for a 6-MV photon beam. When compared with the IMRT and VMAT treatment plan for 2 beams, conformity index, homogeneity index, high dose spillage, D2 cm (Dmax at a distance ${\geq}2cm$ beyond the PTV), R50 (ratio of volume circumscribed by the 50% isodose line and the PTV), resulted in similar. But Dmax of the Organ at risk (OAR), spinal cord, trachea, resulted in differ between four treatment plans. Especially $HDS_{location}$ showed big difference in 21.63% vs. 26.46%.