• 제목/요약/키워드: 표적분류

검색결과 121건 처리시간 0.024초

운동학적 특징을 이용한 다기능 레이다 표적 분류 (Target Classification for Multi-Function Radar Using Kinematics Features)

  • 송준호;양은정
    • 한국전자파학회논문지
    • /
    • 제26권4호
    • /
    • pp.404-413
    • /
    • 2015
  • 대공 레이다에서 표적의 분류는 대 탄도탄 모드 수행의 가장 중요한 부분 중 하나이다. 대 탄도탄 모드에서는 항공기와 탄도탄을 분류하여 각 표적에 따른 대응 방법을 결정한다. 표적 분류의 속도와 정확도는 적의 공격에 대한 대응 능력과 직접적인 관련이 있으므로, 효율적이고 정확한 표적 분류 알고리즘이 필수적이다. 일반적으로, 레이다는 표적 분류를 위해 JEM(Jet Engine Modulation) 및 HRR(High Range Resolution), ISAR(Inverse Synthetic Array Radar) 영상 등을 사용하는데, 이러한 기법들은 표적 분류를 위한 별도의(광대역 등) 레이다 파형과 DB(Data Base) 및 분류 알고리즘을 요구한다. 본 논문은 별도의 파형 없이 실제 다기능 레이다에서 적용 가능한 표적 분류 기법을 제안한다. 특징 벡터로 추적 시 얻은 표적의 운동학적인 특징(kinematics features)을 이용하여 레이다 하드웨어 및 시간 관점에서 레이다 자원을 아끼고, 구현이 간단하여 빠르고 상대적으로 정확한 퍼지 논리(fuzzy logic)를 분류 알고리즘으로 사용하여 실제 환경에서의 적용성을 높였다. 항공기의 실측 데이터와 탄도탄의 모의 신호를 사용하여 제안한 분류 알고리즘의 성능과 적합성을 증명하였다.

표적의 기하학적 변환에 강인한 SIFT 기반의 표적 분류 알고리즘 설계 (Design of a SIFT based Target Classification Algorithm robust to Geometric Transformation of Target)

  • 이희열;김종환;김세윤;최병재;문상호;박길흠
    • 한국지능시스템학회논문지
    • /
    • 제20권1호
    • /
    • pp.116-122
    • /
    • 2010
  • 본 논문은 표적의 회전, 크기 변화, 이동 변화, 자세변화 등의 기하학적 변환에 강인한 표적 분류 방법을 제안한다. 우선 표적의 회전, 크기변화, 이동 변화에 대해서는 SIFT(Scale-Invariant Feature Transform) 특징 벡터들의 유사도, 스케일비, 오리엔테이션의 범위들을 이용한 CM(Confidence Map)에 기반하여 표적을 분류한다. 한편 표적의 자세 변화에 대응하기 위해 다양한 각도에서 획득한 표적 영상의 DB(database)를 이용한다. 각도의 범위는 실행 시간과 샘플링 간격에 따른 성능을 비교, 분석하여 결정한다. 제안한 표적 분류 방법의 성능을 평가하기 위해 기하학적 변화가 있는 여러 가지 영상에 대해 실험한다. 실험을 통해 제안 알고리즘이 우수한 분류 성능을 보임을 증명한다.

다중센서 영상 기반의 지상 표적 분류 알고리즘 (Ground Target Classification Algorithm based on Multi-Sensor Images)

  • 이은영;구은혜;이희열;조웅호;박길흠
    • 한국멀티미디어학회논문지
    • /
    • 제15권2호
    • /
    • pp.195-203
    • /
    • 2012
  • 본 논문은 다중센서 영상을 이용한 결정 융합 기반의 지상 표적 분류 알고리즘 및 특징 추출 기법을 제안한다. 표적의 인식률 향상을 위하여 가중 투표 방법을 적용함으로써 개별 분류기로부터 획득된 결과를 융합하였다. 또한 개별 센서 영상 내에 속한 표적을 분류하기 위해 CCD 영상으로부터 획득한 CM 영상의 밝기 차이와 FLIR 영상 내 표적의 윤곽선 정보 및 차량과 포탑의 너비 비율을 이용하여 스케일과 회전변화에 강인한 특징들을 추출하였다. 마지막으로 실험을 통하여 본 논문에서 제안한 지상 표적 분류 알고리즘과 특징 추출 기법에 대한 성능을 검증한다.

적외선 영상에서 변위추정 및 SURF 특징을 이용한 표적 탐지 분류 기법 (The Target Detection and Classification Method Using SURF Feature Points and Image Displacement in Infrared Images)

  • 김재협;최봉준;천승우;이종민;문영식
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권11호
    • /
    • pp.43-52
    • /
    • 2014
  • 본 논문에서는 적외선 영상에서 영상 변위를 이용하여 기동 표적 영역을 탐지하고, SURF(Speeded Up Robust Features) 특징점에 대한 BAS(Beam Angle Statistics)를 이용하여 분류하는 시스템에 대하여 설명한다. 영상 기반 기술 분야에서 대표적인 대응점 정합 알고리즘인 SURF 기법은 SIFT(Scale Invariant Feature Transform) 기법에 비해 정합 속도가 매우 빠르고 비슷한 정합 성능을 보이기 때문에 널리 사용되고 있다. SURF를 이용한 대부분의 객체 인식의 경우 특징점 추출과 정합의 과정을 수행하지만, 제안하는 기법은 표적의 기동 특성을 반영하여 영상의 변위 추정을 통하여 표적의 영역을 탐지하고 SURF 특징점 들의 기하구조를 판단함으로써 표적 분류를 수행한다. 제안하는 기법은 무인 표적 탐지/인지 시스템의 초기모델 구축을 위하여 연구가 진행되었으며, 모의 표적을 이용한 가상 영상과 적외선 실 영상을 이용하여 실험한 결과 약 73~85%의 분류 성능을 확인하였다.

표적신호 음향산란 특징파라미터를 이용한 패턴인식에 관한 연구 (Pattern Recognition for the Target Signal Using Acoustic Scattering Feature Parameter)

  • 주재훈;신기철;김재수
    • 한국음향학회지
    • /
    • 제19권4호
    • /
    • pp.93-100
    • /
    • 2000
  • 수중 능동소나에 의해 표적을 분류하는데 있어 표적신호의 특징파라미터는 매우 중요하다. 광대역이고 상관성이 높은 두 개의 펄스가 시간 T의 간격으로 분리되어 있을 때, 스펙트럼에서 리플간의 1/T Hz에 해당하는 TSP, 즉 피치 성분을 가진다. 음향산란 실험에 사용된 축소표적신호 또한 이러한 TSP 특징을 잘 반영하고 있다. 본 논문에서는 각 표적신호의 특징에 해당하는 TSP 정보를 FFT를 이용하여 효과적으로 추출하였다. 네 개의 표적과 각 표적의 자세각에 따라 추출된 TSP 특징파라미터를 패턴인식 기법에 적용하여 표적을 분류하고 각 표적의 특징을 분석하였다.

  • PDF

스캔 영상 기반의 밀리미터파(Ka 밴드) 복합모드 탐색기 표적인식 알고리즘 연구 (Target Recognition Algorithm Based on a Scanned Image on a Millimeter-Wave(Ka-Band) Multi-Mode Seeker)

  • 노경아;정준영;송성찬
    • 한국전자파학회논문지
    • /
    • 제30권2호
    • /
    • pp.177-180
    • /
    • 2019
  • 유도무기의 명중률 개선을 위해 해상 클러터 환경에서 표적을 정확하게 탐지하고 인식하는 연구가 다수 수행되고 있다. 해상 표적과 클러터의 신호가 다양하고 복잡한 특성을 보이기 때문에 능동 표적인식 기술에 대한 연구가 필수적으로 요구된다. 본 논문에서는 스캔 영상(scan image)으로 형성된 이미지에 프랙탈 차원기법(fractal dimension)인 FS(Fractal Signature) 분류기와 영상정합기법(scene matching)인 HRTI(High Resolution Target Image)을 적용하여 표적과 클러터를 구분하고 표적 간의 인식하는 알고리즘을 제안한다. 알고리즘을 적용한 시뮬레이션 수행 결과, HRTI 분류기는 표적1과 표적2를 모두 100 %, FS 분류기는 표적 1과 표적 2를 각 각 90 %, 93 % 이상 구분 및 인식한다.

형태특징과 지역특징 융합기법을 활용한 열영상 기반의 차량 분류 방법 (A Vehicle Classification Method in Thermal Video Sequences using both Shape and Local Features)

  • 양동원
    • 전기전자학회논문지
    • /
    • 제24권1호
    • /
    • pp.97-105
    • /
    • 2020
  • 열 영상은 온도에 따라 방출하는 에너지의 차이를 나타낸 영상이다. 주야간 사용이 가능하기 때문에 군사적인 용도로 많이 활용되고 있으나, 열 영상은 물체의 경계가 불명확하고 흐릿하게 표현되는 경우가 많으며 화염 등의 열기로 인해 경계부분이 변질되는 단점이 있다. 따라서, 열 영상을 이용하여 표적의 종류를 분류할 때 정확하게 분할된 경계선을 이용할 경우 효과적으로 분류 할 수 있지만, 물체의 경계가 잘못 추출되는 경우 분류의 정확도가 크게 감소한다. 본 논문에서는 이러한 단점을 극복하기 위해서 표적 영상의 분할 신뢰도에 따라 형태특징과 지역특징의 분류결과를 융합하는 계층적 분류기법을 제안하였으며, 연속 영상 기반으로 분류 결과를 갱신하는 기법을 새롭게 제안하여 차량 표적 분류 정확도를 개선하였다. 제안하는 방법은 실제 군용 표적 4종(전차, 장갑차, 상용차, 군용트럭)이 있는 다양한 자세의 열 영상 20,000장 이상을 이용하여 성능을 검증하였으며, 우수한 성능의 기존 방법 대비 정확도 개선에 효과가 있음을 확인하였다.

주위 통계 특성에 기초한 양방향 필터를 이용한 소형 표적 검출 기법 (Small Target Detection Method Using Bilateral Filter Based on Surrounding Statistical Feature)

  • 배태욱;김영택
    • 한국멀티미디어학회논문지
    • /
    • 제16권6호
    • /
    • pp.756-763
    • /
    • 2013
  • 도메인 필터 및 레인지 필터, 이들 두개의 가우시안 필터에 의해 동작하는 양방향 필터 (bilateral filter)는 원 영상의 선예도 상승 및 노이즈 감소 특성을 가지는 비선형 필터이다. 본 논문은 적외선 소형 표적 탐지에 있어서 양방향 필터을 표적이 없는 경우의 배경을 예측하는 배경 예측기로 설계하고자 한다. 이를 위하여 양방향 필터의 도메인 필터 및 레인지 필터의 표준 편차는 배경 영역과 표적 영역 사이에서 적응적으로 가변되어야 한다. 제안한 양방향 필터는 국부 창 주위 블록에 대하여 그 평균값들의 분산 특성을 이용하여 도메인 필터 및 레인지 필터의 표준 편차를 적응적으로 가변시킨다. 또한 처리되는 화소에 대하여 주위 블록 평균값들의 분산값이 작을 경우 평탄 배경 및 표적 영역으로 분류하고, 그 분산값이 클수록 에지 영역으로 분류하여 양방향 필터 처리함으로써 배경 예측의 정확도를 향상시켰다. 이러한 필터 구조의 양방향 필터는 표적이 없는 경우의 배경을 예측하여 표적을 포함하는 원 영상과 표적이 없는 경우의 예측 배경과의 차를 이용하여 소형 표적을 검출할 수 있다. 실험 결과에서 제안한 양방향 필터를 이용한 방법이 기존의 방법들보다 표적 검출률이 우수함을 확인하였다.

불확실 지상 표적의 인공지능 기반 위협도 평가 연구 (Artificial Intelligence based Threat Assessment Study of Uncertain Ground Targets)

  • 진승현
    • 한국산학기술학회논문지
    • /
    • 제22권6호
    • /
    • pp.305-313
    • /
    • 2021
  • 미래전의 양상은 네트워크 중심전으로 전체계의 연결을 통한 전장상황 정보획득 및 공유가 주를 이룰 것이다. 따라서 전장에서 생성되는 정보의 양은 많아지지만, 정보를 평가하여 전장을 효율적으로 지휘하는 기술은 부족한 것이 현실태이다. 이를 극복하기 위해 대두되는 기술이 전장 위협평가이다. 전장 위협평가는 획득된 정보를 사용하여 지휘관의 신속 결심을 지원하는 기술이지만 획득된 정보에는 표적의 불확실성이 많고 점차 지능화되는 전장상황에 적용하기에 현재 기술수준이 낮은 부분이 있다. 본 논문에서는 표적의 불확실성을 제거하고 고도화되는 전장상황에서도 적용 가능한 인공지능 기반의 전장 위협평가 기법에 대해 제안한다. 사용된 인공지능 시스템으로는 퍼지 추론 시스템과 다층 퍼셉트론을 사용하였다. 퍼지 추론 시스템에 표적의 고유특성을 입력시켜 표적을 분류해내었고 분류된 표적정보를 다른 표적 변수들과 함께 다층 퍼셉트론에 입력하여 해당 표적에 맞는 위협도 값을 산출하였다. 그 결과, 시뮬레이션을 통해 두 가지 시나리오상에서 무작위로 설정된 불확실 표적들을 인공신경망에 훈련시켰고, 훈련된 인공신경망에 시험용 표적을 입력하여 산출되는 위협도 값으로 제안한 기술의 타당성을 검증하였다.

소수 불균형 데이터의 심층학습을 통한 능동소나 다층처리기의 표적 인식성 개선 (Improving target recognition of active sonar multi-layer processor through deep learning of a small amounts of imbalanced data)

  • 류영우;김정구
    • 한국음향학회지
    • /
    • 제43권2호
    • /
    • pp.225-233
    • /
    • 2024
  • 능동소나는 은밀하게 기동하는 수중 물체를 탐지하기 위해 음파를 송신하여 표적에서 반사되어 돌아오는 신호를 탐지한다. 그러나 능동소나의 수신 신호에는 표적의 반향음 외에도 해저면/해수면의 잔향, 생물 소음 및 기타 잡음 등이 섞여 있어 표적 인식을 어렵게 한다. 기존의 문턱값 이상의 신호를 탐지하는 기법은 설정한 문턱값에 따라 오탐지가 발생하거나 표적을 놓치는 경우가 발생할 뿐 아니라 다양한 수중환경마다 적절한 문턱값을 설정해야하는 문제가 있다. 이를 극복하기 위해 Constant False Alarm Rate(CFAR) 등의 기법을 이용한 문턱값의 자동산출과 진보된 형태의 추적 필터 및 연계 기법을 적용한 연구가 수행되었지만, 상당수의 탐지가 발생하는 환경에서는 그 한계가 있다. 최근 심층학습 기술이 발달함에 따라 수중 표적 탐지분야에도 이를 적용하기 위한 노력이 있었으나, 분류기 학습을 위한 능동소나 데이터의 획득이 매우 어려워 데이터가 희소할 뿐 아니라, 극소수의 표적과 상대적 다수의 비표적으로 인한 데이터의 불균형성으로 어려움이 있다. 본 논문에서는 탐지 신호의 에너지 분포 영상을 이용하되, 데이터의 불균형성을 고려한 방식으로 분류기를 학습하여 표적과 비표적을 구분하는 기법을 기존 소나처리 기법에 추가하여 표적의 오분류를 최소화하면서 비표적을 제거하여 능동소나 운용자의 표적 인식을 용이하게 하였다. 그리고 동해에서 수행한 해상실험에서 획득한 능동소나 데이터를 통해 제안 기법의 유효성을 검증하였다.