대공 레이다에서 표적의 분류는 대 탄도탄 모드 수행의 가장 중요한 부분 중 하나이다. 대 탄도탄 모드에서는 항공기와 탄도탄을 분류하여 각 표적에 따른 대응 방법을 결정한다. 표적 분류의 속도와 정확도는 적의 공격에 대한 대응 능력과 직접적인 관련이 있으므로, 효율적이고 정확한 표적 분류 알고리즘이 필수적이다. 일반적으로, 레이다는 표적 분류를 위해 JEM(Jet Engine Modulation) 및 HRR(High Range Resolution), ISAR(Inverse Synthetic Array Radar) 영상 등을 사용하는데, 이러한 기법들은 표적 분류를 위한 별도의(광대역 등) 레이다 파형과 DB(Data Base) 및 분류 알고리즘을 요구한다. 본 논문은 별도의 파형 없이 실제 다기능 레이다에서 적용 가능한 표적 분류 기법을 제안한다. 특징 벡터로 추적 시 얻은 표적의 운동학적인 특징(kinematics features)을 이용하여 레이다 하드웨어 및 시간 관점에서 레이다 자원을 아끼고, 구현이 간단하여 빠르고 상대적으로 정확한 퍼지 논리(fuzzy logic)를 분류 알고리즘으로 사용하여 실제 환경에서의 적용성을 높였다. 항공기의 실측 데이터와 탄도탄의 모의 신호를 사용하여 제안한 분류 알고리즘의 성능과 적합성을 증명하였다.
본 논문은 표적의 회전, 크기 변화, 이동 변화, 자세변화 등의 기하학적 변환에 강인한 표적 분류 방법을 제안한다. 우선 표적의 회전, 크기변화, 이동 변화에 대해서는 SIFT(Scale-Invariant Feature Transform) 특징 벡터들의 유사도, 스케일비, 오리엔테이션의 범위들을 이용한 CM(Confidence Map)에 기반하여 표적을 분류한다. 한편 표적의 자세 변화에 대응하기 위해 다양한 각도에서 획득한 표적 영상의 DB(database)를 이용한다. 각도의 범위는 실행 시간과 샘플링 간격에 따른 성능을 비교, 분석하여 결정한다. 제안한 표적 분류 방법의 성능을 평가하기 위해 기하학적 변화가 있는 여러 가지 영상에 대해 실험한다. 실험을 통해 제안 알고리즘이 우수한 분류 성능을 보임을 증명한다.
본 논문은 다중센서 영상을 이용한 결정 융합 기반의 지상 표적 분류 알고리즘 및 특징 추출 기법을 제안한다. 표적의 인식률 향상을 위하여 가중 투표 방법을 적용함으로써 개별 분류기로부터 획득된 결과를 융합하였다. 또한 개별 센서 영상 내에 속한 표적을 분류하기 위해 CCD 영상으로부터 획득한 CM 영상의 밝기 차이와 FLIR 영상 내 표적의 윤곽선 정보 및 차량과 포탑의 너비 비율을 이용하여 스케일과 회전변화에 강인한 특징들을 추출하였다. 마지막으로 실험을 통하여 본 논문에서 제안한 지상 표적 분류 알고리즘과 특징 추출 기법에 대한 성능을 검증한다.
본 논문에서는 적외선 영상에서 영상 변위를 이용하여 기동 표적 영역을 탐지하고, SURF(Speeded Up Robust Features) 특징점에 대한 BAS(Beam Angle Statistics)를 이용하여 분류하는 시스템에 대하여 설명한다. 영상 기반 기술 분야에서 대표적인 대응점 정합 알고리즘인 SURF 기법은 SIFT(Scale Invariant Feature Transform) 기법에 비해 정합 속도가 매우 빠르고 비슷한 정합 성능을 보이기 때문에 널리 사용되고 있다. SURF를 이용한 대부분의 객체 인식의 경우 특징점 추출과 정합의 과정을 수행하지만, 제안하는 기법은 표적의 기동 특성을 반영하여 영상의 변위 추정을 통하여 표적의 영역을 탐지하고 SURF 특징점 들의 기하구조를 판단함으로써 표적 분류를 수행한다. 제안하는 기법은 무인 표적 탐지/인지 시스템의 초기모델 구축을 위하여 연구가 진행되었으며, 모의 표적을 이용한 가상 영상과 적외선 실 영상을 이용하여 실험한 결과 약 73~85%의 분류 성능을 확인하였다.
수중 능동소나에 의해 표적을 분류하는데 있어 표적신호의 특징파라미터는 매우 중요하다. 광대역이고 상관성이 높은 두 개의 펄스가 시간 T의 간격으로 분리되어 있을 때, 스펙트럼에서 리플간의 1/T Hz에 해당하는 TSP, 즉 피치 성분을 가진다. 음향산란 실험에 사용된 축소표적신호 또한 이러한 TSP 특징을 잘 반영하고 있다. 본 논문에서는 각 표적신호의 특징에 해당하는 TSP 정보를 FFT를 이용하여 효과적으로 추출하였다. 네 개의 표적과 각 표적의 자세각에 따라 추출된 TSP 특징파라미터를 패턴인식 기법에 적용하여 표적을 분류하고 각 표적의 특징을 분석하였다.
유도무기의 명중률 개선을 위해 해상 클러터 환경에서 표적을 정확하게 탐지하고 인식하는 연구가 다수 수행되고 있다. 해상 표적과 클러터의 신호가 다양하고 복잡한 특성을 보이기 때문에 능동 표적인식 기술에 대한 연구가 필수적으로 요구된다. 본 논문에서는 스캔 영상(scan image)으로 형성된 이미지에 프랙탈 차원기법(fractal dimension)인 FS(Fractal Signature) 분류기와 영상정합기법(scene matching)인 HRTI(High Resolution Target Image)을 적용하여 표적과 클러터를 구분하고 표적 간의 인식하는 알고리즘을 제안한다. 알고리즘을 적용한 시뮬레이션 수행 결과, HRTI 분류기는 표적1과 표적2를 모두 100 %, FS 분류기는 표적 1과 표적 2를 각 각 90 %, 93 % 이상 구분 및 인식한다.
열 영상은 온도에 따라 방출하는 에너지의 차이를 나타낸 영상이다. 주야간 사용이 가능하기 때문에 군사적인 용도로 많이 활용되고 있으나, 열 영상은 물체의 경계가 불명확하고 흐릿하게 표현되는 경우가 많으며 화염 등의 열기로 인해 경계부분이 변질되는 단점이 있다. 따라서, 열 영상을 이용하여 표적의 종류를 분류할 때 정확하게 분할된 경계선을 이용할 경우 효과적으로 분류 할 수 있지만, 물체의 경계가 잘못 추출되는 경우 분류의 정확도가 크게 감소한다. 본 논문에서는 이러한 단점을 극복하기 위해서 표적 영상의 분할 신뢰도에 따라 형태특징과 지역특징의 분류결과를 융합하는 계층적 분류기법을 제안하였으며, 연속 영상 기반으로 분류 결과를 갱신하는 기법을 새롭게 제안하여 차량 표적 분류 정확도를 개선하였다. 제안하는 방법은 실제 군용 표적 4종(전차, 장갑차, 상용차, 군용트럭)이 있는 다양한 자세의 열 영상 20,000장 이상을 이용하여 성능을 검증하였으며, 우수한 성능의 기존 방법 대비 정확도 개선에 효과가 있음을 확인하였다.
도메인 필터 및 레인지 필터, 이들 두개의 가우시안 필터에 의해 동작하는 양방향 필터 (bilateral filter)는 원 영상의 선예도 상승 및 노이즈 감소 특성을 가지는 비선형 필터이다. 본 논문은 적외선 소형 표적 탐지에 있어서 양방향 필터을 표적이 없는 경우의 배경을 예측하는 배경 예측기로 설계하고자 한다. 이를 위하여 양방향 필터의 도메인 필터 및 레인지 필터의 표준 편차는 배경 영역과 표적 영역 사이에서 적응적으로 가변되어야 한다. 제안한 양방향 필터는 국부 창 주위 블록에 대하여 그 평균값들의 분산 특성을 이용하여 도메인 필터 및 레인지 필터의 표준 편차를 적응적으로 가변시킨다. 또한 처리되는 화소에 대하여 주위 블록 평균값들의 분산값이 작을 경우 평탄 배경 및 표적 영역으로 분류하고, 그 분산값이 클수록 에지 영역으로 분류하여 양방향 필터 처리함으로써 배경 예측의 정확도를 향상시켰다. 이러한 필터 구조의 양방향 필터는 표적이 없는 경우의 배경을 예측하여 표적을 포함하는 원 영상과 표적이 없는 경우의 예측 배경과의 차를 이용하여 소형 표적을 검출할 수 있다. 실험 결과에서 제안한 양방향 필터를 이용한 방법이 기존의 방법들보다 표적 검출률이 우수함을 확인하였다.
미래전의 양상은 네트워크 중심전으로 전체계의 연결을 통한 전장상황 정보획득 및 공유가 주를 이룰 것이다. 따라서 전장에서 생성되는 정보의 양은 많아지지만, 정보를 평가하여 전장을 효율적으로 지휘하는 기술은 부족한 것이 현실태이다. 이를 극복하기 위해 대두되는 기술이 전장 위협평가이다. 전장 위협평가는 획득된 정보를 사용하여 지휘관의 신속 결심을 지원하는 기술이지만 획득된 정보에는 표적의 불확실성이 많고 점차 지능화되는 전장상황에 적용하기에 현재 기술수준이 낮은 부분이 있다. 본 논문에서는 표적의 불확실성을 제거하고 고도화되는 전장상황에서도 적용 가능한 인공지능 기반의 전장 위협평가 기법에 대해 제안한다. 사용된 인공지능 시스템으로는 퍼지 추론 시스템과 다층 퍼셉트론을 사용하였다. 퍼지 추론 시스템에 표적의 고유특성을 입력시켜 표적을 분류해내었고 분류된 표적정보를 다른 표적 변수들과 함께 다층 퍼셉트론에 입력하여 해당 표적에 맞는 위협도 값을 산출하였다. 그 결과, 시뮬레이션을 통해 두 가지 시나리오상에서 무작위로 설정된 불확실 표적들을 인공신경망에 훈련시켰고, 훈련된 인공신경망에 시험용 표적을 입력하여 산출되는 위협도 값으로 제안한 기술의 타당성을 검증하였다.
능동소나는 은밀하게 기동하는 수중 물체를 탐지하기 위해 음파를 송신하여 표적에서 반사되어 돌아오는 신호를 탐지한다. 그러나 능동소나의 수신 신호에는 표적의 반향음 외에도 해저면/해수면의 잔향, 생물 소음 및 기타 잡음 등이 섞여 있어 표적 인식을 어렵게 한다. 기존의 문턱값 이상의 신호를 탐지하는 기법은 설정한 문턱값에 따라 오탐지가 발생하거나 표적을 놓치는 경우가 발생할 뿐 아니라 다양한 수중환경마다 적절한 문턱값을 설정해야하는 문제가 있다. 이를 극복하기 위해 Constant False Alarm Rate(CFAR) 등의 기법을 이용한 문턱값의 자동산출과 진보된 형태의 추적 필터 및 연계 기법을 적용한 연구가 수행되었지만, 상당수의 탐지가 발생하는 환경에서는 그 한계가 있다. 최근 심층학습 기술이 발달함에 따라 수중 표적 탐지분야에도 이를 적용하기 위한 노력이 있었으나, 분류기 학습을 위한 능동소나 데이터의 획득이 매우 어려워 데이터가 희소할 뿐 아니라, 극소수의 표적과 상대적 다수의 비표적으로 인한 데이터의 불균형성으로 어려움이 있다. 본 논문에서는 탐지 신호의 에너지 분포 영상을 이용하되, 데이터의 불균형성을 고려한 방식으로 분류기를 학습하여 표적과 비표적을 구분하는 기법을 기존 소나처리 기법에 추가하여 표적의 오분류를 최소화하면서 비표적을 제거하여 능동소나 운용자의 표적 인식을 용이하게 하였다. 그리고 동해에서 수행한 해상실험에서 획득한 능동소나 데이터를 통해 제안 기법의 유효성을 검증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.