미국 노동통계청에서 사용하고 있는 BLS 방법의 효율성과 민감성에 관한 연구 결과에 의하면 표본 틀 (Sample frame) 자료와 조사된 자료의 상관관계가 높을수록 BLS 무응답 보정 효과는 커지는 것으로 알려져 있다 (이석진과 신기일, 2008). 그러나 표본 틀 자료와 조사된 자료의 상관계수가 층별로 크기가 다른 경우, BLS 보정 효과는 달라질 수 있다. 따라서 일반적으로 실시되는 표본 설계에서는 층화추출 방법이 사용되기 때문에 각 층의 표본 크기와 상관계수가 다른 경우의 BLS 보정 효과률 살펴보는 것은 매우 중요하다. 본 논문에서는 층의 표본 크기와 상관계수 그리고 무응답 비율에 따른 BLS 무응답 보정 효과를 살펴보았다. 이를 위해 사용된 자료는 노동부의 월별 자료인 2007년 매월노동통계 자료이다.
주변분포가 Laplace 분포인 세 가지 형태의 이변량 Laplace 분포를 연구한다. 각각의 이변량 Laplace 분포의 확률밀도함수와 누적분포함수를 유도하고, 분포의 그래프를 그려봄으로써 분포의 형태를 알아본다. 조건부 적률을 정리하여 조건부 첨도와 조건부 왜도를 구하고 분포의 성질을 파악한다. 상관계수를 구하여 다른 이변량 분포의 상관계수와 비교해 보았다. 그리고 정의된 분포함수를 응용하여 이변량 Laplace 분포를 따르는 난수벡터를 발생하는 알고리즘을 제안하였으며, 생성된 난수벡터의 표본으로부터 구한 표본평균과 중앙값의 분산-공분산 행렬식을 구하고 이변량 정규분포에 대응하는 행렬식과 비교 토론하였다.
모집단의 변화를 효과적으로 추정하기 위한 반복조사 방법으로 겨체표본조사를 고려할 수 있다. 교체표본조사는 크게 일수준교체표본조사와 다수준교체표본조사로 나누어지며 모집단의 특성, 특성의 변화를 추정하기 위하여 복합추정량을 사용하고 있다. 본 논문에서는 다수준교체표본조사의 경우 교체그룹내 표본개체들의 상관관계를 고려한 일반화복합추정량과 추정량의 분산을 최소화시키는 최적계수를제시하였다. 또한 수치예에서는 교체그룹내 표본개체의 수, 교체그룹내 상관정도의 변화에 따라 표본개체들의 상관관계를 고려한 일반화 복합추정량의 효율성을 제시하였다.
미국 노동통계청에서 사용하고 있는 BLS 방법의 효율성과 민감성에 관한 연구 결과에 의하면 표본 틀(Sample frame) 자료와 조사된 자료의 상관관계가 높을수록 BLS 무응답 보정 효과는 커지는 것으로 알려져 있다 (이석진과 신기일, 2008). 그러나 표본 틀 자료와 조사된 자료의 상관계수가 층별로 크기가 다른 경우, BLS 보정 효과는 달라질 수 있다. 따라서 일반적으로 실시되는 표본 설계에서는 층화추출 방법이 사용되기 때문에 각 층의 표본 크기와 상관계수가 다른 경우의 BLS 보정 효과률 살펴보는 것은 매우 중요하다. 본 논문에서는 층의 표본 크기와 상관계수 그리고 무응답 비율에 따른 BLS 무응답 보정 효과를 살펴보았다. 이를 위해 사용된 자료는 노동부의 월별 자료인 2007년 매월노동통계 자료이다.
사회조사를 위한 표본설계를 할 때 표본의 크기를 얼마로 할 것인지를 결정하는 문제는 조사연구자에게 고민거리가 된다. 사회조사 중에서 4점 또는 5점 척도로 된 여러 개의 개별 문항들로 구성된 설문지를 사용하는 경우가 많다. 이런 경우 개개의 문항 자체를 직접적으로 하나의 변수로 사용하지 않고 여러 개 문항들을 결합하여 새로운 척도를 만들어 사용하는 것이 일반적이다. 본 연구의 목적은 리커트 척도가 관심변수인 조사연구에서 표본크기를 결정하는 방법을 제공하는 것이다. 리커트 척도를 만들고자 할 때 4점 혹은 5점 척도로 구성된 여러 문항변수들은 일반적으로 서로 양의 상관관계를 가지게 된다. 본 연구에서는 개별 문항변수들은 각각 동일한 분포를 가지며, 각각의 변수들은 서로 동일한 크기의 상관관계를 갖는다는 가정을 한다. 주어진 가정 하에서 새로운 척도의 표본분포를 유도한 후 이를 이용하여 다양한 상황에서의 표본의 크기를 계산한 결과를 표로 제시하게 되는데 표본이론을 잘 모르는 조사연구자들은 이 표를 이용하여 원하는 표본크기를 결정 할 수 있을 것이다.
수공구조물의 설계 시 적절한 확률수문량을 추정하는 것은 매우 중요하며, 이러한 확률수문량을 추정하기 위해서는 표본으로서의 수문자료를 잘 표현할 수 있는 확률분포형을 찾아야 한다. 이와 같이 수문자료에 통계적 특성을 잘 표현할 수 있는 확률분포형을 찾기 위해서 적합도 검정을 실시하며, 적합도 검정 중 하나인 확률도시 상관계수 검정은 비교적 최근에 개발되어 그 사용법이 간단하며 높은 기각능력을 갖는다고 알려져 있다. 본 연구에서는 왜곡도 계수의 영향을 고려할 수 있는 도시위치공식을 이용하여 확률도시 상관계수 검정통계량을 유도하고 그 기각능력을 검토하였으며, 그 결과를 기존에 왜곡도 계수를 고려하지 않은 확률도시 상관계수 검정 방법과 비교해보았다. 그 결과 본 연구에서 유도된 확률도시 상관계수 검정에 의한 기각능력이 기존의 검정 방법들 보다 뛰어났으며, 특히 표본 크기가 작을수록, 발생 분포형이 형상 매개변수를 가질 경우 기각능력이 높게 나타나는 것으로 나타났다.
신뢰도 연구는 한 명의 평가자가 연구 대상을 반복 측정하거나 여러 명의 평가자가 한 대상을 평가할 때 평가자 내, 평가자 간 일치도를 알아보는 연구로 임상 의학 분야에서 빈번하게 쓰이고 있다. 이 같은 신뢰도 연구에서 적절한 표본수, 평가자수 및 반복수를 결정하는 것은 비용과 시간 측면에서 보다 더 효율적인 연구를 할 수 있게 해주는 중요한 요인이다. 본 연구의 목적은 신뢰도 연구에서 측정치가 정량적일 때 쓰이는 신뢰도 계수인 급내상관계수(ICC)와 관련한 기존의 표본수 산출 방법들을 비교분석하여 적절한 표본수나 반복수를 결정할 때 그 지침을 제공하는데 있다. 기존 논문에서 제시한 Walter 등 (1998), Giraudeau와 Mary (2001), Saito 등 (2006) 그리고 Bonett (2002)의 방법들을 비교하였다. 임의효과 일원배치 모형일 때 같은 조건에서 가장 적은 양의 정보를 필요로 하는 방법을 찾는 목적으로 요인을 변화시켜 가면서 표본수, 반복수, 신뢰구간 폭을 비교한다. 비교해 본 결과, 가장 작은 수의 표본을 필요로 하는 방법은 Giraudeau의 방법, 가장 작은 수의 반복을 필요로 하는 방법은 Saito의 방법으로 나타났다. 가장 많은 수의 표본과 반복을 필요로 한 방법은 Bonett의 방법이었다. 정도는 Giraudeau의 방법이 가장 높았고 Walter, Saito, Bonett 순으로 정도가 떨어졌다.
한 시계열의 자기상관계수의 절대값을 시차를 무한대로 접근시켜 가면서 각 시차에 대하여 구하고 이 절대값을 모두 더한 값이 무한일 때 이 시계열은 장기기억을 가진다. 이로 인하여 장기기억 모수를 추정하는데에는 자기상관을 기본으로 한다. 표본의 자기상관과 이론적 자기상관 사이의 거리를 최소하여 추정통계량을 유도하고 있는 것이 일반적이다. 이 경우에는 정상적 과정에 한하여 적용이 가능하다. 시계열은 어느 시계열이던지 간에 이 시계열에 적합한 모형이 존재할 것이고 이 모형을 시계열에 적용하면 잔차 시계열을 얻을 수 있다. 원래 시계열의 이론적 상관 대신 원래 시계열의 잔차 시계열의 자기상관과 표본의 자기상관 사이의 거리를 최소하여 추정통계량을 얻으면 통계량의 계산이 편하고 이 추정량은 정상적 시계열과 비정상적 시계열에 다같이 적용할 수 있다. 본 논문에서는 잔차의 자기상관을 이용하여 자기회귀 분수적분 이동평균 과정의 모수 추정량을 도출한다. 그리고 이 추정 통계량에 입각하여 주가의 형성과정을 살펴보고 장기기억이 옵션가격과 포트폴리오 구성에 미치는 영향을 밝힌다.
표본조사에서 가중치는 설계 단계와 분석 단계에서 만들어지고 부여될 수 있다. 설계 단계의 가중치는 추출확률이나 응답률 등과 같은 표본 데이터 획득 지표에 관련되어 있고 분석 단계의 가중치는 모집단 수치나 다른 보조 변수정보 등과 같은 외적인 정보와 관련되어 있다. 그리고 최종가중치는 설계 단계의 가중치와 분석 단계의 가중치의 곱으로 만들어진다. 이 논문에서는 분석 단계에서 부여되는 가중치에 초점을 맞추어 가중평균으로 모평균을 추정할 때 가중평균에 포함된 가중치가 모평균 추론에 미치는 영향을 고찰하였다. 유한모집단에서 각 조사단위에 조사변수와 가중치가 쌍으로 있고 표본추출확률이 균등한 경우를 가정하였다. 이러한 조건에서 가중평균의 편향과 평균제곱오차를 구하여 가중평균은 모평균의 편향 추정량임을 보였고, 편향의 방향과 크기는 조사변수와 가중치의 상관관계로 설명할 수 있음을 보였다. 즉, 만일 가중치와 조사변수가 양의 상관관계가 있으면 가중평균은 모평균을 과대 추정하게 되고, 만일 음의 상관관계가 있으면 모평균을 과소 추정하게 된다. 그리고 두 변수의 상관계수가 크면 편향은 증가한다. 가중평균에 대한 이론적인 수식 유도와 함께 편향의 크기와 평균제곱오차의 크기를 수치적으로 검토하기 위하여 모의실험을 실시하였다. 모의실험에서는 상관계수가 -0.2과 0.6사이에 있는 9개의 가중치를 생성하였고, 표본수는 100부터 400까지 고려하여 편향의 크기와 평균제곱오차의 크기를 수치적으로 구하였다. 하나의 결과로써 상관계수가 0.55이고 표본수가 400인 경우에 가중평균의 편향의 제곱이 평균제곱오차에서 차지하는 비율은 무려 82%에 이르는 것으로 나타났는데, 이는 가중평균의 편향이 어떤 경우에는 매우 심각할 수도 있음을 보여주는 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.