We systematized an stratified spatial sample design(SSSD) that uses the adequate stratification criteria such as the shapeness or the dispersion of an interesting region in a spatial population. And we proposed an adaptive searching estimation method in the SSSD to estimate the area of region of interest in two-dimensional surfaces. When wc adopt the proposed adaptive searching estimation method in SSSD, the observing sample size is more decreased than a classical sample design that all the designed sample size is observed. Nevertheless it has been shown that we can produce the moderate result but the efficiency is a slight reduced.
An informative predictor subspace is useful to estimate the central subspace, when conditions required in usual suffcient dimension reduction methods fail. Recently, for multivariate regression, Ko and Yoo (2022) newly defined a projective-resampling informative predictor subspace, instead of the informative predictor subspace, by the adopting projective-resampling method (Li et al. 2008). The new space is contained in the informative predictor subspace but contains the central subspace. In this paper, a method directly to estimate the informative predictor subspace is proposed, and it is compapred with the method by Ko and Yoo (2022) through theoretical aspects and numerical studies. The numerical studies confirm that the Ko-Yoo method is better in the estimation of the central subspace than the proposed method and is more efficient in sense that the former has less variation in the estimation.
We propose an adaptive searching method using some spatial relations among sample points to estimate the interesting area in the spatial population. The fundamental idea is to observe the neighboring sample points when a sample point is satified with some condition of an adaptive searching observation. For obseving the sample points with this method to estimate the area the sample size is decreased. From this result, we may expect to reduce the cost and time consuming in observation the sample points and to draw the shape of the interesting area without prior information of an spatial population. Some analytical simulation results are also presented.
본 연구는 우리나라의 수치지형도에서 수치고도모형(DEM)을 개발하고자 할 때 고려해야 할 요인들을 분석하였다. 특히 DEM의 정확도에 결정적으로 영향을 미치는 내삽법의 과정을 지형적 유형(평지.계곡.산지)과 공간적 표본추출법(체계적추출법.군집형무작위추출법.복합점진적표본추출법)에 따라 구분하여 살펴 보았다. RMSE의 측정을 통해 크리깅 내삽법이 지형의 기복에 산관없이 정확도를 유지함녀서 DEM을 생성할 수 있는 방법으로 평가되었다. 그리고 표본추출법에 따라 공간적 표본 밀도를 달리한 낮은 표본을 대상으로 한 경우에 비해 낮게 나타났다. 또한 본 연구에서 제안한 복합 점진적 표본추출법을 적용한 DEM의 정확도는 다른 표본추출법을 적용한 경우보다 그 정확도가 향상됨을 확인하였고, 반면에 계산상의 효율성이 다른 방법에 비해 떨어지는 단점을 보였다.
본 연구에서는 관심거리가 되고 있는 마코프인쇄 몬테칼로(Markov Chain Monte Carlo, MCMC)방법에 근거한 공간 확률난수 (spatial random variate)생성법과 깁스표본추출법(Gibbs sampling)에 의한 베이지안 분석 방법에 대한 기술적 사항들에 관하여 검토하였다. 먼저 기본적인 확률난수 생성법과 관련된 사항을 살펴보고, 다음으로 조건부명시법(conditional specification)을 이용한 공간 확률난수 생성법을 예를 들어 살펴보기로한다. 다음으로는 이렇게 생성된 공간자료를 분석하기 위하여 깁스표본추출법을 이용한 베이지안 사후분포를 구하는 방법을 살펴보았다.
공간통계분석은 공간적으로 연계된 변수들간의 관계를 분석하는 통계분야이다. 일 반적으로 공간적으로 연계된 변수들간의 관계는 각 변수간의 공간적 분포정도에 따라서 영 향을 받는다. 전통적인 통계 분석의 방법은 동질의 자료발생과정에 의하여 확률적으로 축출 된 표본자료를 가정하고 있으나, 공간적인 자료는 이와 같은 동질의 자료발생과정의 가정을 부정한다. 교통류 및 교통사고 등과 같은 교통분야의 자료는 대부분 공간적인 상관관계에 의하여 축출된 이질적인 표본자료이며 따라서 공간상관관계를 동질적으로 가정한 전통적인 통계적 분석 방법은 오류를 범할 수 있다. 본 논문은 공간적인 관계를 고려한 공간자기상관 분석기법을 이용하여 고속도로상의 교통사고에 관하여 분석하였다. 분석의 결과에 의하면 4 개 고속도로 중 경인고속도로를 제외한 3개의 고속도로상의 교통사고건수는 통계적으로 현 저한 양의 공간적 상관관계가 있음을 알 수 있었다. 이에 따라 공간적 상관관계를 고려한 교통사고분석을 위하여 종속변수로 단위구간별 교통사고건수를 그리고 설명변수로서는 단위 구간별 교통량, I.C. 유무 및 화물차량비율을 이용하여 공간 자기회귀분석을 시도하였다. 분 석의 분석에서는 구간별 교통량과 화물차량의 비율이 호남/남해 고속도로의 경우에는 구간 별 교통량과 I.C. 유무가 통계적으로 유의한 것으로 분석되었다.
본 연구는 고해상도 위성영상에서 나타나는 그림자 효과를 보정하여 공간정보 획득을 향상하는데 목적이 있다. 이를 위한 방법으로 그림자 효과를 받은 화소와 그렇지 않은 화소의 군집을 표본으로. 사용하여 그림자 효과를 보정하는 방법을 제시한다. 표본은 그림자 효과를 받은 화소와 그렇지 않은 화소를 대상으로 각기 생성된다. (중략)
Communications for Statistical Applications and Methods
/
v.17
no.1
/
pp.9-16
/
2010
The sampling design for the spatial population studies needs a model assumption of a dependent relationship, where the interesting parameters can be the population mean, proportion and area. We know that the study of an interested spatial population, which is stratified by a geographical condition or shape, and the degree of distort of an estimation area is much useful. In light of this, if auxiliary information of the target variable such as wasted area contaminated by some material and the degree of distribution of animal or plants is available, then the spatial estimator might be improved through the calibration procedure. In this research, we propose the calibration procedure for the spatial stratified sampling in which we consider the one and two-dimensional auxiliary information.
Proceedings of the Korea Society for Simulation Conference
/
2004.05a
/
pp.41-47
/
2004
중심합성계획(central composite design: ccd)은 반응 표면이 곡면적인 특성을 나타낼때 반응 공간을 추정하기 위해 사용되는 실험계획이다. 반응공간이 2차 회귀모형으로 나타나는 경우에 반응곡면의 변화량을 알기 위해서는 변수의 수준이 3이상이 되어야하는데 ccd는 적은 횟수의 실험으로 곡면을 효과적으로 추정하기 위해 2$^{k}$ 요인실험에 추가적으로 중심점(central point)과 축점(axial point)을 표본점에 포함시키는 계획이다. 본 연구에서는 시뮬레이션 실험에서 반응변수가 2차 회귀모형으로 근사되는 경우에 cod를 이용하여 관심 성과치의 반응표면을 추정하고자 한다. 일반적인 실험에서와는 달리 시뮬레이션 실험에서는 두개의 표본점(인자 수준의 조합)에서 분석자가 공통 난수계열(common random number series)을 부여하여 시뮬레이션 시스템 요소의 변화과정을 유사하게 통제할 수 있다. 일반적으로 공통난수법(common random number method)에 의해 얻어지는 두 표본점에서의 반응변수는 서로 양의 상관관계를 가지며 대조 난수(antithetic random number)에 의한 두 반응변수는 음의 상관성을 가지는 것으로 알려졌다. 본 연구는 ccd의 표본점에 공통난수와 대조난수 법을 이용하여 회귀모형의 파라미터를 효과적으로 추정하는 방법을 조사하고 이를 (s, S) 재고관리 모형에 적용하여 그 효율성을 평가하고자 한다.
This paper presents a method for classifier selection that uses distribution information of the training samples in a small region surrounding a sample. The conventional DCS-LA(Dynamic Classifier Selection - Local Accuracy) selects a classifier dynamically by comparing the local accuracy of each classifier at the test time, which inevitably requires long classification time. On the other hand, in the proposed approach, the best classifier in a local region is stored in the FSA(Feature Space Attribute) table during the training time, and the test is done by just referring to the table. Therefore, this approach enables fast classification because classification is not needed during test. Two feature space attributes are used entropy and density of k training samples around each sample. Each sample in the feature space is mapped into a point in the attribute space made by two attributes. The attribute space is divided into regular rectangular cells in which the local accuracy of each classifier is appended. The cells with associated local accuracy comprise the FSA table. During test, when a test sample is applied, the cell to which the test sample belongs is determined first by calculating the two attributes, and then, the most accurate classifier is chosen from the FSA table. To show the effectiveness of the proposed algorithm, it is compared with the conventional DCS -LA using the Elena database. The experiments show that the accuracy of the proposed algorithm is almost same as DCS-LA, but the classification time is about four times faster than that.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.