• Title/Summary/Keyword: 표면 윤곽

Search Result 47, Processing Time 0.025 seconds

Stereoscopic depth of surfaces lying in the same visual direction depends on the visual direction of surface features (표면 요소의 시선방향에 의한 동일시선 상에 놓여있는 표면의 입체시 깊이 변화)

  • Kham Keetaek
    • Korean Journal of Cognitive Science
    • /
    • v.15 no.4
    • /
    • pp.1-14
    • /
    • 2004
  • When two objects are tying in the same visual direction there occurs abrupt depth change between two objects, which is against the assumption of the computational model for stereopsis on the surfaces in a natural scene. For this reason, this stimulus configuration is popularly used in the studies for the effectiveness of the constraints employed in the computational model. Contrary to the results from two nails (or objects) tying in the same visual direction, the two different surfaces from random-dot stereogram (RDS) in the same situation can be seen simultaneously in the different depth. The seemingly contradictory results between two situations my reflect the different strategies imposed by binocular mechanism for each situation during binocular matching process. Otherwise, the surfaces tying in the same visual direction is not equivalent situation to two objects tying in the same visual direction with regards to matching process. In order to examine above possibilities, the stereoscopic depth of the surface was measured after manipulating the visual direction of the surface elements. The visual direction of each dot pair from different surfaces in RDS (in Experiment 1) or the visual direction of line (hawing rectangle with regard to that of the vertical line (in Experiment 2) was manipulated. The stereoscopic depth of the surface was found to be varied depending on visual direction of the surface elements in both RDS and line hawing stimulus. Similar to the results from two nails situation depth of the surface was greatly reduced when each surface element was tying in the same visual direction as that of the other surface element or the other object. These results suggest that binocular mechanism imposes no different strategy in resolving correspondence problem in both two objects and two surfaces situation. And the results were discussed in the context of usefulness of the constraints employed in the computational model for stereopsis.

  • PDF

Three-dimensional Digital Restoration and Surface Depth Modeling for Shape Analysis of Stone Cultural Heritage: Haeundae Stone Inscription (석조문화유산의 형상분석을 위한 3차원 디지털복원과 표면심도 모델링:해운대 석각을 중심으로)

  • Jo, Young-Hoon;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.28 no.1
    • /
    • pp.87-94
    • /
    • 2012
  • This study was focused on digital restoration and surface depth modeling applying the three-dimensional laser scanning system of the Haeundae Stone Inscription. Firstly, the three-dimensional digital restoration carried out acquiring of point cloud using wide range and precision scanner, thereafter registering, merging, filtering, polygon mesh and surveyed map drawing. In particular, stroke of letters, inscribed depth and definition appearing the precision scanning polygon was outstanding compared with ones of the wide range polygon. The surface depth modeling completed through separation from polygon, establishment of datum axis, selection of datum point, contour mapping and polygon merging. Also, relative inscribed depth (5~17mm) and outline by the depth modeling was well-defined compared with photograph and polygon image of the inscription stone. The digital restoration technology merging wide range and precision scanning restored the total and detailed shape of the Stone Inscription quickly and accurately. In addition, the surface depth modeling visibly showed unclear parts from naked eye and photograph. In the future, various deteriorations and surrounding environment change of the Stone Inscription will be numerically analyze by periodic monitoring.

Using a computer color image automatic detection algorithm for gastric cancer (컴퓨터 컬러 영상을 이용한 위암 자동검출 알고리즘)

  • Han, Hyun-Ji;Kim, Young-Mok;Lee, Ki-Young;Lee, Sang-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.4
    • /
    • pp.250-257
    • /
    • 2011
  • This experiment present the automatic detection algorithm of gastric cancer that take second place among all cancers. If an inflammation and a cancer are not examined carefully, early ones have difficulty in being diagnosed as illnesses than advanced ones. For diagnosis of gastric cancer, and progressing cancer in this study, present 4 algorithm. research team extracted an abnormal part in stomach through the endoscope image. At first, decide to use shading technique or not in each endoscope image for study. it make easy distinguish to whether tumor is existing or not by putting shading technique in or eliminate it by the color. Second. By passing image subjoin shading technique to erosion filter, eliminate noise and make give attention to diagnose. Third. Analyzing out a line and fillet graph from image adding surface shade and detect RED value according to degree of symptoms. Fourth. By suggesting this algorithm, that making each patient's endscope image into subdivision graph including RED graph value, afterward revers the color, revealing the position of tumor, this study desire to help to diagnosing gastric, other cancer and inflammation.

Symmetric Shape Deformation Considering Facial Features and Attractiveness Improvement (얼굴 특징을 고려한 대칭적인 형상 변형과 호감도 향상)

  • Kim, Jeong-Sik;Shin, Il-Kyu;Choi, Soo-Mi
    • Journal of the Korea Computer Graphics Society
    • /
    • v.16 no.2
    • /
    • pp.29-37
    • /
    • 2010
  • In this paper, we present a novel deformation method for alleviating the asymmetry of a scanned 3D face considering facial features. To handle detailed areas of the face, we developed a new local 3D shape descriptor based on facial features and surface curvatures. Our shape descriptor can improve the accuracy when deforming a 3D face toward a symmetric configuration, because it provides accurate point pairing with respect to the plane of symmetry. In addition, we use point-based representation over all stages of symmetrization, which makes it much easier to support discrete processes. Finally, we performed a statistical analysis to assess subjects' preference for the symmetrized faces by our approach.

The development of product inspection X-ray DR image processing system using intensifying screen (형광지를 이용한 물품검사 X-선 DR 영상처리 시스템 개발)

  • Park, Mun-kyu;Moon, Ha-jung;Lee, Dong-hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1737-1742
    • /
    • 2015
  • In the industrial field for product inspection needs not only on the surface of the product but also the internal components defect inspection. Generally, optical inspection is mainly used for item inspection from production process. However, this is only to check defect of surface it is difficult to perform inspection of goods internal. To overcome these limitations, Instead of optical device by using the portable X- ray DR image acquisition device system developed to obtain an image in real time at the same time and determine product defects. After obtaining the X- ray image, the inspection product within error range is passed after machine image processing. Also, the results and numbers are stored by users.

Measurement of Breast Volume and the Area of Breast Base Using 3D Measurement System (3차원 측정시스템을 이용한 유방부피 및 유저면적의 측정)

  • 이현영;이옥경;홍경희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.27 no.2
    • /
    • pp.270-276
    • /
    • 2003
  • Methodology was suggested to analyze breast volume, base area of breast bulk. and surface area of breast using the 3D measurement system. Thirty-seven middle-aged (30s-40s) women wearing 80A brassiere were participated in this study. Image of the upper body was captured by Phase-shifting moire. The posture of the subject was adjusted to get the full image of the right breast. Rapidform 2001 was used for the analysis of the images. The mean breast volume was 547.0㎤ and mean base area of breast bulk was 235. I$\textrm{cm}^2$ It was also found that the volume(r=0.169) and surface area of breast(r=10.242) were loosely correlated with the circumference difference between top and under breast. Therefore, it is noted that current selection criterion of cup size based on the difference in the two kinds of breast circumference is inadequate. The result of this study is expected to contribute to the design of ergonomic brassiere as well as surgical operations in the medical field.

Surface Inspection Algorighm using Oriented Bounding Box (회전 윤곽 상자를 이용한 표면 검사 알고리즘)

  • Hwang, Myun Joong;Chung, Seong Youb
    • Journal of Institute of Convergence Technology
    • /
    • v.6 no.1
    • /
    • pp.23-26
    • /
    • 2016
  • DC motor shafts have several defects such as double cut, deep scratch on surface, and defects in diameter and length. The deep scratches are due to collision among the other shafts. So the scratches are long and thin but their orientations are random. If the smallest enclosing box, i.e. oriented bounding box for a detective point group is found, then the size of the corresponding defect can be modeled as its diagonal length. This paper proposes an suface inspection algorithm for the DC motor shaft using the oriented bounding box. To evaluate the proposed algorithm, a test bed is made with a line scan CCD camera (4096 pixels/line) and two rollers mechanism to rotate the shaft. The experimental result on a pre-processed image with contrast streching algorithm, shows that the proposed algorithm sucessfully finds 150 surface defects and its computation time (0.291 msec) is enough fast for the requirement (4 seconds).

Multiple Texture Image Recognition with Unsupervised Block-based Clustering (비교사 블록-기반 군집에 의한 다중 텍스쳐 영상 인식)

  • Lee, Woo-Beom;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.327-336
    • /
    • 2002
  • Texture analysis is an important technique in many image understanding areas, such as perception of surface, object, shape and depth. But the previous works are intend to the issue of only texture segment, that is not capable of acquiring recognition information. No unsupervised method is basased on the recognition of texture in image. we propose a novel approach for efficient texture image analysis that uses unsupervised learning schemes for the texture recognition. The self-organization neural network for multiple texture image identification is based on block-based clustering and merging. The texture features used are the angle and magnitude in orientation-field that might be different from the sample textures. In order to show the performance of the proposed system, After we have attempted to build a various texture images. The final segmentation is achieved by using efficient edge detection algorithm applying to block-based dilation. The experimental results show that the performance of the system Is very successful.

Segmentation and Visualization of Human Anatomy using Medical Imagery (의료영상을 이용한 인체장기의 분할 및 시각화)

  • Lee, Joon-Ku;Kim, Yang-Mo;Kim, Do-Yeon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.1
    • /
    • pp.191-197
    • /
    • 2013
  • Conventional CT and MRI scans produce cross-section slices of body that are viewed sequentially by radiologists who must imagine or extrapolate from these views what the 3 dimensional anatomy should be. By using sophisticated algorithm and high performance computing, these cross-sections may be rendered as direct 3D representations of human anatomy. The 2D medical image analysis forced to use time-consuming, subjective, error-prone manual techniques, such as slice tracing and region painting, for extracting regions of interest. To overcome the drawbacks of 2D medical image analysis, combining with medical image processing, 3D visualization is essential for extracting anatomical structures and making measurements. We used the gray-level thresholding, region growing, contour following, deformable model to segment human organ and used the feature vectors from texture analysis to detect harmful cancer. We used the perspective projection and marching cube algorithm to render the surface from volumetric MR and CT image data. The 3D visualization of human anatomy and segmented human organ provides valuable benefits for radiation treatment planning, surgical planning, surgery simulation, image guided surgery and interventional imaging applications.

The study on the quality characteristics factor of medium-sized orbit scroll (중형 선회 스크롤의 품질 특성 인자에 대한 연구)

  • Kim, Jae-Gi;Lim, Jeng-Taek;Kang, Soon-Kook;Park, Jong-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.718-723
    • /
    • 2016
  • The use of the scroll compressor in the air conditioning of medium-sized vehicles has increased because of its low torque fluctuation, high energy efficiency and low noise. In addition, the main components of the compressor have been changed from steel to aluminum to reduce its weight, following studies on the constituent materials. The processing precision of the fixed scroll and orbiting involute scroll wrap of the scroll compressor must be below $10{\mu}m$. To ensure this, the surface roughness and contour tolerance are measured. To improve the hardness of the orbiting scrolls using aluminum subjected to anodizing treatment and as the base material, we used a sealing treatment and measured the resulting characteristics. The aluminum materials were made of an Al-Mg-Cu based alloy including small amounts of Ni, Fe, and Zn. The surface roughness was less than $3{\mu}m$ and the processing accuracy was within $10{\mu}m$. Also, the hardness of the nanodiamonds with CNTs used in the sealing treatment was more than 450. This was found to improve the hardness of the material by 50% or more compared to the water sealing treatment and there was little difference between the use of carbon nanotubes and nanodiamonds as sealing materials.