• Title/Summary/Keyword: 표면유동

Search Result 1,060, Processing Time 0.031 seconds

Blood Flow Rate Estimation using Proximal Isovelocity Surface Area Technique Based on Region-Based Contour Scheme and Surface Subdivision Flow Model (영역기반 윤곽선 기법과 표면 분할 유동모델에 기반한 근위 등속 표면적 기법을 이용한 혈류량 추정)

  • Jin, Kyung-Chan;Cho, Jin-Ho
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.1
    • /
    • pp.45-52
    • /
    • 2001
  • The proximal isovelocity surface area (PISA) method is an effective way of measuring the regurgitant blood flow rate in the mitral valve. This method defines the modelling required to describe the geometry of the isotach of the PISA. In the normal PISA flow model, the flow rate is calculated assuming that the surface of the isotach is either hemispherical or non-hemispherical numerically. However, this paper evaluated the estimate flow rate using a direct surface subdivision flow model based on the height field after isotach extraction using a region-based scheme. To validate the proposed method, the various PISA flow models were compared using pusatile color Doppler images with flow rates ranging from $30\;cm^3/sec\;to\;60\;cm^3/sec$ flow rate. Whereas the hemispherical flow model had a mean value of $29\;cm^3/sec$ and underestimated the measured flow rate by 35%, the proposed model and non-hemispherical model produced a c;ame mean value of $45\;cm^3/sec$, moreover, both flow models produced a similar pulsatile flow rate.

  • PDF

LES for Turbulent Duct Flow with Mass injection (덕트내부에서 질량분사가 있는 난류유동의 LES 해석)

  • Kim, Bo-Hoon;Na, Yang;Lee, Chang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.210-213
    • /
    • 2010
  • Recent experimental data shows that the noticeable feature of irregular roughened spots on the fuel surface occurs during the combustion test. The generation of these unexpected patterns is likely to be resulted from the disturbed boundary layer due caused by wall blowing which is intended to simulate the process of fuel vaporization. LES without chemical reaction was conducted to investigate the flow characteristics at the near-fuel surface and the behavior of turbulent structures which is evolved by the wall blowing at the Reynolds number of 23,000. Cylindrical geometry was considered to get the most reality of the calculation results because real hybrid rocket motor is circular grain configuration. It was shown that the wall blowing pushed turbulent structures upwards making them tilted and this skewed displacement, in effect, left the foot prints of the structures on the surface. This change of kinematics may explain the formation of irregular isolated spots on the fuel surface observed in the experiment.

  • PDF

Effect of Flow Liners on Ship′s Wake Simulation in a Cavitation Tunnel (캐비테이션 터널에서의 반류분포 재현에 미치는 유동조절체의 영향)

  • Jin-Tae Lee;Young-Gi Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.2
    • /
    • pp.66-75
    • /
    • 1993
  • Flow control devices, such as flow liners, are frequently introduced hi a cavitation tunnel in order to reduce the tunnel blockage effect, when a three-dimensional wake distribution is simulated using a complete ship model or a dummy model. In order to estimate the tunnel wall effect and to evaluate the effect of flow liners on the simulated wake distribution, a surface panel method is adopted for the calculation of the flow around a ship model and flow liners installed in a rectangular test section of a cavitation tunnel. Calculation results on the Sydney Express ship model show that the tunnel wall effect on the hull surface pressure distribution is negligible for less than 5% blockage and can be appreciable for more than 20% blockage. The flow liners accelerate the flow near the after body of the ship model, so that the pressure gradient there becomes more favorable and accordingly the boundary layer thickness would be reduced. Since the resulting wake distribution is assumed to resemble the full scale wake, flow liners can also be used to simulate an estimated full scale wake without modifying the ship model. Boundary layer calculation should be incorporated in order to correlate the calculated wake distribution with tole measured one.

  • PDF

콤퓨터의 설계 및 게이팅시스팀내에서의 금속유동에 관한 연구<1>

  • John ST.;Davis G.;Magny G.
    • 발명특허
    • /
    • v.8 no.1 s.83
    • /
    • pp.45-48
    • /
    • 1983
  • 세인트 베넌트방정식의 한정적인 분자분석에 의한 컴퓨터 설계는 게이팅 장치를 이용한 제1차적인 금속의 표면 자유 유동을 위해서 개발되었다. 이 설계에 의해서 사전에 예기되었던 유동양식은 (1) X-레이 형광방전을 이용해서 조사한 모래로 만든 주형내에서의 여러 종류의 금속의 실질적인 유동현상 그리고 (2) 투명한 플라스틱장치 내에서의 물의 유동현상과 비교 검토되었다. 이 설계는 실험 관측된 유동양식과 산출된 유동양식이 순조로운 상관관계를 유지할 때까지 면밀히 다듬어 졌다.

  • PDF

The Study of Fluid Induced Vibration Integrity Evaluation for the Pipe System (배관계 유체 유발진동 건전성 평가에 대한 연구)

  • Jang, Hoon;Chai, Jang Bom;Ryu, Ho Geun;Kim, Dong Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.216-216
    • /
    • 2014
  • 과거 유체 유발 진동(FIV : Fluid Induced Vibration)은 배관계 설계 하중에 고려되지 않은 설계 하중이었다. 하지만, 원자력 발전소 또는 화력 발전소의 배관형상이 복잡하고 고온수가 배관 내부에서 유동하는 배관계에서 육안으로 관측이 가능한 배관진동이 발생하였다. 이에 배관 진동에 대하여 원인 분석과 배관 구조 건전성 평가에 관심을 가지게 되었다. 배관 진동은 배관 형상에 따라 배관 내부 난류 유동에 대한 압력 변동이 하나의 원인이며, 고온수가 유동하는 배관일수록 압력 변동에 대한 배관 진동이 크게 나타나는 것으로 분석되었다. 배관 내부 난류 유동에 대한 압력 변동을 불규칙 수력하중이라고 한다. 본 연구에서는 배관 내부에서 난류 유동으로 발생하는 불규칙 수력하중을 유동해석을 이용하여 PSD(Power Spectral Density)로 산출하고, PSD 하중을 이용하여 불규칙 구조 응답 해석을 수행하여 배관계 응력 분포에 대하여 연구하였다. 배관 내부 난류 유동에 대한 불규칙 수력하중은 DES 난류 모델을 사용하여 시간에 대한 배관 내부 표면의 유체 속도를 유동 해석으로 산출하였으며, 유체 속도를 동압으로 계산한 후 FFT(Fast Fourier Transform)를 수행하여 PSD 하중으로 산출하였다. 그리고 불규칙 구조 응답 해석에서 배관 내부 유체 영향에 대한 진동 감쇠를 표현하기 위하여 유체 질량을 산출하고, 배관 구조 해석 모델 표면에 질량을 입력하는 방법으로 배관 고유진동수 및 불규칙 구조 응답 해석을 수행하였다.

  • PDF

Study on the Flow Around an Elliptic Wing Using Flow Visualization Technique (유동가시화를 통한 타원형날개주위 유동연구)

  • Beom-Soo Hyun;Moon-Chan Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.1
    • /
    • pp.94-103
    • /
    • 1993
  • This study deals with an investigation on the tip vortex generated by an elliptic wing with section shapes of NACA 0020. The flow structure on the wing surface is investigated by using tufts test as well as observing the cavitation pattern. The surface pressure on a foil surface is measured to complement the visualized flow field. Results show that a strong spanwise pressure gradient is a definite contributor on the formation of tip vorex, and the fluids from both sides contribute to the evolutionary process of tip vortex. On the other hand, a series of experiments are conducted to investigate the detailed structure of tip-vortex at various angles of attack. The tip-vortex formation and development are observed by producing a cavitation, and then by a laser sheet technique in conduction with a dye injection method. The shape of tip-vortex and the distance between a vortex core and the trailing vortex sheet are found to vary with the angle of attack. Overall features of tip flow are evaluated to complement the vortex model based on inviscid theory.

  • PDF

Effects of Concrete Superplastizers on the Cement Wettability and the Strength Properties of Cocreate Mortar (콘크리트 유동화제가 시멘트 입자의 표면 젖음성 및 콘크리트 몰타르 경화물성에 미치는 영향)

  • Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.21 no.4
    • /
    • pp.457-462
    • /
    • 2010
  • In this research, the effects of the concrete superplastizers on the wettability of cement particle and concrete strength were studied. The wettability of the cement particles strongly depended on the type of the superplastizer. When the superplastizer had a higher wettability with the cement particles, it revealed a good fluidity of the concrete mortar and a higher concrete strength. Non-ionic superplastizers (polycarboxylic type) had a relatively good performance on the mortar fluidity and concrete strength properties compared to anionic superplastizers (lignosulfate, sulfonated naphthalene formaldehyde, sulfonated melamin formaldehyde). It was observed that the blending of the polycarboxylic and the lignosulfate type concrete superplastizers resulted in synergistic effects on the concrete mortar fluidity and concrete strength properties.

Pool Boiling Characteristics on the Microstructured surfaces with Both Rectangular Cavities and Channels (사각 공동 및 채널이 형성된 마이크로 구조 표면에서의 수조비등 특성연구)

  • Kim, Dong Eok;Park, Su Cheong;Yu, Dong In;Kim, Moo Hwan;Ahn, Ho Seon;Myung, Byung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.6
    • /
    • pp.383-389
    • /
    • 2016
  • Based on a surface design with rectangular cavities and channels, we investigated the effects of gravity and capillary pressure on pool-boiling Critical Heat Flux (CHF). The microcavity structures could prevent liquid flow by the capillary pressure effect. In addition, the microchannel structures contributed to induce one-dimensional liquid flow on the boiling surface. The relationship between the CHF and capillary flow was clearly established. The driving potentials for the liquid supply into a boiling surface can be generated by the gravitational head and capillary pressure. Through an analysis of pool boiling and visualization data, we reveal that the liquid supplement to maintain the nucleate boiling condition on a boiling surface is closely related to the gravitational pressure head and capillary pressure effect.

Analysis of Steady Flows in a Rectangular Container with a Characterization of the Free Surface by One-Dimensional Motion (1차원 표면유동의 정량화에 따른 직사각형 용기내의 정상유동 해석)

  • 변민수;서용권
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.227-231
    • /
    • 2001
  • Analysis of two-dimensional unsteady flows with a free surface in a rectangular container subject to a linear reciprocating force is performed by numerical and experimental methods. FVM is used for the numerical computation of the two-dimensional flows. We consider the surface tension as well as the viscous/elastic properties of the free surface. One-dimensional analysis as well as experiment is used in establishing the free surface properties. The steady recirculatory flow is visualized by a laser sheet. It is shown that the one-dimensional analysis provides useful informations associated with the free surface properties.

  • PDF

Heat Transfer Measurement in a Supersonic Flowfield by an Infra-red Thermography (적외선 측정 기법을 이용한 초음속 유동내 열전달 측정)

  • Yu, Man-Sun;Yi, Jong-Ju;Song, Ji-Woon;Cho, Hyung-Hee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.359-362
    • /
    • 2006
  • Infra-red thermography was conducted to understand a heat transfer characteristic on a surface protruded to a supersonic flowfield. Surface temperature distribution was obtained under the constant heat flux condition with a infra-red camera and the convective heat transfer coefficient distribution was calculated. Finally, two dimensional distribution of heat transfer coefficient on a surface around a cylinder body was derived.

  • PDF