• Title/Summary/Keyword: 표면변위

Search Result 297, Processing Time 0.026 seconds

An Analysis of Photoacoustic Signals Excited by Excimer Pulsed Laser (엑시며 레이저 펄스에 의해 여기된 광음향신호 분석)

  • Yi, Chong-Ho;Jun, Kye-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.39-46
    • /
    • 1997
  • In this paper, the PA(PhotoAcoustic) signals excited in metals by Xef, KrF excimer laser pulse were detected by a PZT transducer, and its transforming machanism and directivity patterns were analysed. The laser energy density in irradiation spot divides the PA trasnsorming machanism to be classified into thermoelastic and plasma regime, and the transforming machanisms in two regimes are different from each other. Based on theoretical model, it is predicted that shear wave is greater than longitudinal in the thermoelastic regime and longitudinal is greater than shear wave by reaction force in plasma regime. These predictions were verified through experiments by using of the XeF excimer pulsed laser of 480nm center-wavelength and the KrF excimer pulsed laser of 248nm. Also, for its directivity pattern, an arrival angle of the maximum longitudinal energy was around $60^{\circ}$ and maximum shear energy was around $30^{\circ}$ in the thermoelastic regime, and an arrival angle of maximum longitudinal energy was shown on nomal to the surface and maximum shear energy was represented in about $30^{\circ}$ in plasma regime.

  • PDF

Study on Three-Dimensional Curved-Surface Machining Using Industrial Articulated Robot (다관절 로봇을 이용한 3차원 곡면가공 방안에 관한 연구)

  • Jung, Chang-Wook;Noh, Tae-Yang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1071-1076
    • /
    • 2011
  • NC machines are generally used for machining operations because of their position accuracy, path accuracy, and machining reaction force. However, some NC machines require a very large space and are expensive. Recently, industrial articulated robot arms with large handling capability and wrist torque have been developed and the corresponding sensor technology has been improved. A machining robot for three-dimensional large curved objects was developed on the basis of an automatic-path-generation method. A self-position-compensation method with a laser displacement sensor was adopted for the six-axis robot developed, because the large articulated robot arms had poor position accuracy. An automatic-path-generation method using specific points was adopted to reduce the number of teaching points and time. In order to determine the proper machining conditions, various machining conditions such as tool rotation speed, cutting angle, cutting depth, and tool moving speed, were evaluated.

Analysis of Crack characteristic on Concrete Cover for Subway Box Structure Due to Reinforcement Corrosion (철근부식으로 인한 지하철 박스구조물의 콘크리트 피복층 균열특성 분석)

  • Choi, Jung-Youl;Shin, Dong-Sub;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.727-732
    • /
    • 2022
  • Applying the calculated cross-sectional reduction due to the corroded rebar investigated in the field to the numerical analysis model, the damage pattern and delamination of concrete in the field showed a tendency relatively similar to the numerical analysis results. It was analyzed that when the expansion pressure due to corrosion of the reinforcing bar is greater than the tensile stress of the concrete, cracks are generated and the concrete cover can be fracture. As a result of this study, the correlation between the corrosion rate of reinforcing bars and the crack occurrence of the concrete cover of the subway box structure was verified based on the numerical analysis and field test results. To prevent rebar corrosion, the corrosion rate can be reduced by applying rust prevention to the reinforcing bar and changing the material. In the case of exposed to a corrosive environment, the tensile strength of the concrete is improved by adjusting the concrete compressive strength to secure durability against the expansion pressure caused by the corroded rebar.

Classification of the Rusting State of Pipe Using a Laser Displacement Sensor (레이저 변위 센서를 활용한 배관 표면 상태분류)

  • Cheon, Kang-Min;Shin, Baek-Cheon;Shin, Geon-Ho;Go, Jeong-Il;Lee, Jun-Hyeok;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.46-52
    • /
    • 2022
  • Although pipe performs various functions in industrial sites and residential spaces, if it is damaged due to corrosion caused by the external environment, it may cause equipment failure or a major accident. For this reason, various studies for safety management are being conducted, but studies on detecting corrosion or cracks on the pipe surface using a laser displacement sensor have hardly been conducted. Therefore, in this study, the corrosion degree of the pipe surface was compared and classified into 4 corrosion conditions, and inspection equipment using a laser scanner was manufactured. The corrosion height was calculated from the four surface data obtained from the measuring equipment and applied to various CNN algorithms, and 91% accuracy was obtained during training using the Modified VGGNet16 code with reduced number of parameters.

Characteristics of Structural Behavior and Safety Estimation of Water Supply GFRP Pipe (상수도용 유리섬유복합관의 구조적 거동특성 및 안전성 평가)

  • Lee, Bo-Be;Lee, Seung-Sik;Joo, Hyung-Jong;Yoon, Soon-Jng
    • Composites Research
    • /
    • v.22 no.3
    • /
    • pp.1-8
    • /
    • 2009
  • In this paper, we present the results of experimental and analytical investigations on the structural behavior of GFRP pipes used in the water supply pipeline system. Cross-section of the pipe is consisted with two GFRP tubes and polymer mortar between the tubes. Due to the advantages such as light-weight, corrosion resistance, smooth surface, flexibility, etc., use of GFRP pipe in the water supply pipeline system is ever increasing trend. Therefore, more optimized structural design methodology should be developed. In the investigation, we conducted theoretical and analytical studies on the load versus radial deformation characteristics of GFRP pipes. In addition, ring stiffness test is also performed. Test results are compared with theoretical and analytical results and it was found that the results are agreed well within 5% of radial deformation. Finally, it was also found that the GFRP pipes used in the water supply pipeline system are strong enough to satisfy the industrial requirements.

Detection of Surface Changes by the 6th North Korea Nuclear Test Using High-resolution Satellite Imagery (고해상도 위성영상을 활용한 북한 6차 핵실험 이후 지표변화 관측)

  • Lee, Won-Jin;Sun, Jongsun;Jung, Hyung-Sup;Park, Sun-Cheon;Lee, Duk Kee;Oh, Kwan-Young
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_4
    • /
    • pp.1479-1488
    • /
    • 2018
  • On September 3rd 2017, strong artificial seismic signals from North Korea were detected in KMA (Korea Meteorological Administration) seismic network. The location of the epicenter was estimated to be Punggye-ri nuclear test site and it was the most powerful to date. The event was not studied well due to accessibility and geodetic measurements. Therefore, we used remote sensing data to analyze surface changes around Mt. Mantap area. First of all, we tried to detect surface deformation using InSAR method with Advanced Land Observation Satellite-2 (ALOS-2). Even though ALOS-2 data used L-band long wavelength, it was not working well for this particular case because of decorrelation on interferogram. The main reason would be large deformation near the Mt. Mantap area. To overcome this limitation of decorrelation, we applied offset tracking method to measure deformation. However, this method is affected by window kernel size. So we applied various window sizes from 32 to 224 in 16 steps. We could retrieve 2D surface deformation of about 3 m in maximum in the west side of Mt. Mantap. Second, we used Pleiadas-A/B high resolution satellite optical images which were acquired before and after the 6th nuclear test. We detected widespread surface damage around the top of Mt. Mantap such as landslide and suspected collapse area. This phenomenon may be caused by a very strong underground nuclear explosion test. High-resolution satellite images could be used to analyze non-accessible area.

Three dimensional accuracy analysis of dental stone casts fabricated using irreversible hydrocolloid impressions (알지네이트 인상체에서 제작된 치과용 석고 모형의 정확도에 대한 삼차원 디지털 분석)

  • Joo, Young-Hun;Lee, Jin-Han
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.31 no.4
    • /
    • pp.316-328
    • /
    • 2015
  • Purpose: The objects of this study was to evaluate the accuracy of the dental stone casts made from alginate impressions according to storage condition and stone pouring time. Materials and Methods: Each of upper and lower impressions of dental model was taken. The dental stone models were made immediately, 10, 30, 60, 180, 360 minutes after the impressions were taken at each storage condition. 3D models were constructed by scanning the stone model using 3D laser scanner. With Reference points, positioned on digital models, linear measurements of the dimensional change were compared by 3D metrology software, 3D average models were made and superimposition to identify the specific site of dimensional change and to measure surface deviation (mm). Results: Dental stone models which were made immediately after taking the impression showed the smallest linear dimensional change. As the stone pouring time was prolonged, the linear dimensional change was increased. More than 180 minutes after impression taking, linear dimensional change and surface distortion increased in the posterior molar region, regardless of the storage condition. Conclusion: For the optimum accuracy of the dental stone casts, alginate impression should be poured as soon as possible. If there were a need for storing, a humidor with 100% relative humidity must be used and be stored less than 180 minutes to fabricate the accurate dental model.

A Study for Characterization on Shallow Behavior of Soil Slope by Flume Experiments (토조실험 장치를 이용한 토사비탈면 표층거동 특성 연구)

  • Suk, Jae-wook;Park, Sung-Yong;Na, Geon-ha;Kang, Hyo-Sub
    • The Journal of Engineering Geology
    • /
    • v.28 no.3
    • /
    • pp.489-499
    • /
    • 2018
  • A flume experiments was used to study the characteristics of the surface displacements and volumetric water contents (VWC) during torrential rain. The surface displacement and VWC of the granite weathered soil were measured for rainfall intensity (100, 200 mm/hr) and initial ground condition (VWC 7, 14, 26%). The test processes were also recorded by video cameras. According to the test results, The shallow failure is classified into three types: retrogressive failure, progressive failure and defined failure. In the case of retrogressive failure and progressive failure, relatively large damage could occur due to the feature that soil is deposited to the bottom of the slope. the shallow failure occurred when the VWC reached a certain value regardless of the initial soil condition. It was found that the shallow failure can be predicted through the increase patton of the VWC under the condition of the ground dry condition (VWC 7%) and the natural condition (VWC 14%). For high rainfall intensity, progressive failure predominated, and rainfall intensity above a certain level did not affect wetting front transition.

An experimental study on the ground movement around a square pipe by its penetration for trenchless construction in sandy ground (사각형 강관을 이용한 비개착 시공에 따른 지반거동의 분석: 모래지반에 대한 모형 토조실험)

  • Choi, Soon-Wook;Park, Young-Taek;Chang, Soo-Ho;Bae, Gyu-Jin;Lee, Ki Taek;Baek, Yong Ki
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.5
    • /
    • pp.485-501
    • /
    • 2012
  • This study aims to experimentally investigate ground settlement and ground movement around the square pipe by its penetration in sandy ground. A series of laboratory model tests were carried out with a small-scale auger equipment for penetration of a square pipe as well as a newly designed test box with a sand raining equipment. From the experiments, it is shown that a square pipe induces ground movement evenly around it in a low overburden condition. However, as the overburden becomes higher, ground movement by a square pipe is concentrated mainly above it. Especially, horizontal strain above the square pipe was mainly dominated by its penetration. In addition, sand surface movement is the smallest in case of the dimensionless penetration rate equal to 0.2. When its penetration rate of the square pipe is fixed, the rotation speed of auger controls surface movement whether it is settlement or heaving. Therefore, the selection of an optimal dimensionless rate for the square pipe is a key design factor to minimize ground settlement in a trenchless construction.

Three-Dimensional Kinematic Model of the Human Knee Joint during Gait

  • Mun, Joung-Hwan;Seichi Takeuchi
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.171-179
    • /
    • 2002
  • It is well known that the geometry of the articular surface plays a major role in the kinematic and kinetic analysis to understand human knee joint function during motion. The functionality of the knee joint cannot be accurately modeled without considering the effects of sliding and lolling motions. We Present a 3-D human knee joint model considering sliding and rotting motion and major ligaments. We employ more realistic articular geometry using two cam profiles obtained from the extrusion of the sagittal Plain view of the representative Computerized Tomography image of the knee joint compared to the previously reported model. Our model shows good agreement with the already reported experimental results on Prediction of the lines of force through the human joint during gait. The contact point between femur and tibia moves toward the Posterior direction as the knee undergoes flexion, reflecting the coupling of anterior and Posterior motion with flexion/extension. The anterior/posterior displacement of the contact Point on the tibia plateau during one gait cycle is about 16 mm. for the lateral condyle and 25 mm. for the medial condyle using the employed model Also. the femur motion on the tibia undergoes lateral/medial movement about 7 mm. and 10 mm. during one gait cycle for the lateral condyle and medial condyle. respectively. The developed computational model maybe Potentially employed to identify the joint degeneration.