• Title/Summary/Keyword: 표면미세경도

Search Result 230, Processing Time 0.034 seconds

Physicochemical and Rheological Evaluation of Rice-Whole Soybean Curds Prepared by Microbial Transglutaminase (미생물 Transglutaminase를 이용하여 제조된 쌀 혼합 전두부의 이화학적 및 물성 평가)

  • Jin, Ik-Hun;Lee, Sam-Pin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.5
    • /
    • pp.738-746
    • /
    • 2011
  • We manufactured rice-whole soybean curd by a microbial transglutaminase (MTGase) with a mixture of hydrolyzed rice and micronized whole soybean powder (MWSP) and analyzed its rheological properties, including texture, viscoelasticity, protein cross-linking, and surface structure. A 40% rice suspension digested with a Termamyl enzyme at $85^{\circ}C$ for 20 min showed a 9.0% reducing sugar and a consistency of $1.27\;Pa{\cdot}s^n$, resulting in a great reduction in consistency. A MWSP suspension with 22% solid content was transformed into a typical tofu texture. MWSP curd fortified with 7.5% rice showed enhanced texture properties, with a hardness of 639.6 dyne/$cm^2$, and a springiness of 0.96. In a MWSP suspension (18~22% w/v) treated with 5% MTGase, viscoelasticity increased dependently with MWSP concentration, and a 22% MWSP indicated a G' value of 5.1 Pa and a G'' value of 9.0 Pa. Furthermore, soybean proteins present in the 22% MWSP curd largely disappeared or formed polymers with a high molecular weight by MTGase reaction within 30 min. MWSP (22%) fortified with 7.5% rice showed similar polymerization patterns on SDS-PAGE. The surface structure of the rice-MWSP curds was more dense and homogeneous network due to the addition of hydrolyzed rice. However, the surface structure of all rice-MWSP curds became rough and showed a non-homogeneous network after cold storage.

Mechanism of Strength Development in Ultra High Strength Concrete Using the Electric Arc Furnace Oxidizing Slag as Fine Aggregate (초고강도 콘크리트에서 전기로 산화 슬래그 잔골재 사용에 의한 강도 증진 기구)

  • Lee, Seung-Heun;Lim, Doo-Sub;Lee, Seung-Hoon;Lee, Joo-Ha
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.3-9
    • /
    • 2013
  • In ultra high strength concrete, when electric arc furnace oxidizing slag is substituted for sea sand as fine aggregate, compressive strength was improved about 15 MPa. To figure out the cause of the improvement in compressive strength, this study considered the dissolution characteristics of Ca component in fine aggregate and examined the microstructure, porosity, microhardness, and Ca/Si mole ratio on the interface of fine aggregate and paste. And to examine the mechanism of strength improvement resulted from the shape of fine aggregate, this study measured the surface roughness of fine aggregate with AFM. According to the result of this experiment, the mechanisms of strength improvement in ultra high strength concrete resulted from the use of electric arc furnace oxidizing slag as fine aggregate can be divided into chemical and physical mechanisms. In the chemical mechanism, the soluble Ca component contained in electric arc furnace oxidizing slag is dissolved and forms a hydrate between fine aggregate and paste to improve the interlocking strength of fine aggregate-paste. Also, it makes the microstructure around the fine aggregate. And in the physical mechanism, electric arc furnace oxidizing slag has a twice greater surface roughness than sea sand, so the interlocking strength between fine aggregate and paste increases, which contributes to the development of compressive strength.

EFFECT OF FLUORIDE AND CALCIUM ON ENAMEL REMINERALIZATION IN VITRO (불소와 칼슘의 법랑질 재광화 효과에 대한 생체외 연구)

  • Lee, Kwang-Hee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.4
    • /
    • pp.624-629
    • /
    • 2004
  • The purpose of study was to observe the effect of fluoride and calcium on enamel remineralizaton in vitro. Human premolar enamel specimens were prepared by demineralization in $0.1{\sim}l.0%$ citric acid for 60 minutes. They were remineralized for 6 hours in one of the 1311owing solutions : (1) artificial saliva, (2) artificial saliva with 100ppmF, (3) artificial saliva with 1000ppmF, (4) artificial saliva with 1000ppmCa, and (5) artificial saliva with 100ppmF and 1000ppmCa. No significant remineralization was occurred in artificial saliva and artificial saliva with 100ppmF. Significant remineralization was observed in artificial saliva with 1000ppmF at 3 hours, and in artificial saliva with 1000ppmCa and artificial saliva with 100ppmF and 1000ppmCa at 3 and 6 hours(P<0.05). The remineralization effect of artificial saliva with 100ppmF and 1000ppmCa was greater than that of artificial saliva or artificial saliva with 100ppmF. Addition of F to 100ppm or 1000ppm, addition of Ca to 1000ppm, and increasing the concentration of F from 100ppm to 1000ppm did not significantly increase the remineralization.

  • PDF

EFFECT OF HYDROGEN PEROXIDE CONCENTRATION ON THE WHITENING AND PHYSICAL PROPERTIES OF HYDROXYAPATITE DISCS (Hydrogen Peroxide 농도와 적용시간이 Hydroxyapatite Discs의 미백과 물리적 성질에 미치는 영향)

  • Yang, Yeon-Mi;Lee, Doo-Cheol;Baik, Byeong-Ju;Kim, Jae-Gon;Shin, Jeong-Geun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.34 no.1
    • /
    • pp.1-12
    • /
    • 2007
  • The purpose of this study was to evaluate the effect that various concentration and application time of hydrogen peroxide had on tooth whitening and physical properties. The hydroxyapatite (HA) discs of $12mm({\Phi}){\times}1.2mm(t)$ in dimensions were made by compression $(100kg/cm^2)$ and sintering (at $1350^{\circ}C$ for 2 hours) All specimens were polished sequentially with '240 through '2000 emery paper and one side of each specimen was polished finally with $0.3{\mu}m$ alumina paste. The discs were placed in sterile whole stimulated saliva overnight at $37^{\circ}C$ in order to form an in vitro pellicle layer. Then the discs were rinsed with distilled water and soaked into staining broth at $37^{\circ}C$ for 7 days. These stained specimens were bleached with hydrogen peroxide according to the change of concentration $(3{\sim}30%)$ and application time ($3{\sim}10$ days). The specimens were analyzed with a spectrophotometer, X-ray diffractometer (XRD), scanning electron microscope (SEM), surface roughness tester, microhardness tester and biaxial flexural strength. The results of present study can be summarized as follows : 1. The bleaching effect was increased with the increased concentration and the extended application time of hydrogen peroxide. 2. The surface roughness was significantly increased from the specimen bleached with 15% hydrogen peroxide for 10 days and with 30% for 7 and 10 days respectively (p<0.05). 3. The changes of crystal phase observed by XRD between before and after bleaching weren't shown of any difference, but microporous structure of surface observed by SEM was shown of increase with the increased concentration and the extended application. 4. The biaxial flexural strength was significantly decreased from bleaching of specimen with 30% hydrogen peroxide for 7 and 10 days respectively (p<0.05) 5. Microhardness was significantly decreased from bleaching with 15% hydrogen peroxide for 10 days and with 30% for 3, 7 and 10 days respectively (p<0.05). Although the tooth bleaching effect was greater when the high concentration was applied, further in vivo experiment will be needed to prove it's safety.

  • PDF

Study for Fracture in the Last Stage Blade of a Low Pressure Turbine (화력발전용 저압터빈 최종 단 블레이드에 대한 파손 연구)

  • Lee, Gil Jae;Kim, Jae Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.423-428
    • /
    • 2016
  • The last stage blades of a low pressure (LP) turbine get frequently fractured because of stress corrosion cracking. This is because they operate in a severe corrosive environment that is caused by the impurities dissolved in condensed steam and high stress due to high speed rotation. To improve the reliability of the blades under severe conditions, 12% Cr martensitic stainless steel, having excellent corrosion resistance and higher strength, is widely used as the blade material. This paper shows the result of root cause analysis on a blade which got fractured suddenly during normal operation. Testing of mechanical properties and microstructure examination were performed on the fractured blade and on a blade in sound condition. The results of testing of mechanical properties of the fractured blade showed that the hardness were higher but impact energy were lower, and were not meeting the criteria as per the material certificate specification. This result showed that the fractured blade became embrittled. The branch-type crack was found to have propagated through the grain boundary and components of chloride and sulfur were detected on the fractured surface. Based on these results, the root cause of fracture was confirmed to be stress corrosion cracking.

Microstructure and Hardness of Yb:YAG Disc Laser Surface Overlap Melted Cold Die Steel, STD11 (Yb:YAG 디스크 레이저로 표면 오버랩 용융된 냉간금형강, STD11의 미세조직과 경도)

  • Lee, Kwang-Hyeon;Choi, Seong-Won;Yun, Jung Gil;Oh, Myeong-Hwan;Kim, Byung Min;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.33 no.5
    • /
    • pp.53-60
    • /
    • 2015
  • Laser surface Melting Process is getting hardening layer that has enough depth of hardening layer as well as no defects by melting surface of substrate. This study used CW(Continuous Wave) Yb:YAG and STD11. Laser beam speed, power and beam interval are fixed at 70mm/sec, 2.8kW and 800um respectively. Hardness in the weld zone are equal to 400Hv regardless of melting zone, remelting zone overlapped by next beam and HAZ. Similarly, microstructures in all weld zone consist of dendrite structure that arm spacing is $3{\sim}4{\mu}m$, matrix is ${\gamma}$(Austenite) and dendrite boundary consists of ${\gamma}$ and $M_7C_3$ of eutectic phase. This microstructure crystallizes from liquid to ${\gamma}$ of primary crystal and residual liquid forms ${\gamma}$ and $M_7C_3$ of eutectic phase by eutectic reaction at $1266^{\circ}C$. After solidification is complete, primary crystal and eutectic phase remain at room temperature without phase transformation by quenching. On the other hand, microstructures of substrate consist of ferrite, fine $M_{23}C_6$ and coarse $M_7C_3$ that have 210Hv. Microstructures in the HAZ consist of fine $M_{23}C_6$ and coarse $M_7C_3$ like substrate. But, $M_{23}C_6$ increases and matrix was changed from ferrite to bainite that has hardness above 400Hv. Partial Melted Zone is formed between melting zone and HAZ. Partial Melted Zone near the melting zone consists of ${\gamma}$, $M_7C_3$ and martensite and Partial Melted Zone near the HAZ consists of eutectic phase around ${\gamma}$ and $M_7C_3$. Hardness is maximum 557Hv in the partial melted zone.

Investigation of Regraphitization during Cam Shaft Remelting (캠 샤프트 재용융 처리시 재흑연화 현상에 관한 연구)

  • Oh, Young-Kun;Kim, Gwang-Soo;Koh, Jin-Hyun
    • Korean Journal of Materials Research
    • /
    • v.8 no.7
    • /
    • pp.648-652
    • /
    • 1998
  • TIG remelting was performed to harden the surface of automobile earn shaft. Multipass remelting was conducted in longitudinal direction under argon gas atmosphere. The microstructure of as-east earn shaft was gray iron which consisted of flake graphite and pearlitic matrix. The remelted area had microstructue of both fine pearlite and ledeburite structure that consisted of globular austenite and $Fe_3C$. Hardness for as-cast earn shaft had HRc 25~28, however it increased at remelted area to HRc 53~55. Black line was found at heat affected zone next to the fusion line, that is remelt area of previous pass, during multipass remelting. Black line was identified as graphite, which was transformed from $Fe_3C$. in the ledeburite structure. It is observed that all graphites were nucleated at $Fe_3C$. and matrix interface. High density energy laser remelting process was also applied to verify whether black line could be eliminated. However, black line was still existed as observed in TIG remelting process. Regraphitization was simulated on the ledeburitic structure specimen using Gleeble 1500 with conditions of 1100 and 100$0^{\circ}C$ for 0.5, I, 3, 5 and 1Osee. From the fact that graphite was formed even at the simulation condition of 100$0^{\circ}C$ for 0.5sec, it is seen that regraphitization is an inevitable phenomenon generated whatever processes used during multipass overlap remelting.

  • PDF

A Study on the Noodle Quality Made from Hovenia dulcis Composite Flour (헛개나무 열매 분말을 첨가한 국수의 품질특성)

  • Choi, Sook;Park, Geum-Soon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.10
    • /
    • pp.1586-1592
    • /
    • 2005
  • In order to develop Houenia dulcis with natural food application the effect of Hovenia dulcis fruits powder content the physical, textural and sensory properties of noodles were examined. The analysis of the contents of free amino acids showed that 17 kinds of amino acids were detected and highest in 3$\%$ Hovenia dulcis fruits powder contents. The weight and the volume of cooked noodle were highest in control the more added of Houenia dulcis fruits powder contorts lessen the weight and the volume (p < 0.01, p < 0.001), the water absorption ratio was highest in control group. Hunter color value of noodle showed that L value was 7.62 in control, a and b values were highest in 5$\%$ added group. More added Houenia dulcis fruits powder contents increased a and b values (p < 0.001). Hardness, cohesiveness (p < 0.05), gumminess and brittleness (p < 0.001) were highest in control, springiness was highest in 1$\%$ added group (p < 0.001). Scanning electron micrographs of noodle showed that more added of Houenia dulcis fruits powder contents made the particle uniform, so softer and larger. Sensory properties showed that color of noodle and herb flavor were thicker in more added of Houenia duzcis fruits powder contents (p < 0.001). The taste was highest in 3$\%$ added Houenia dulcis fruits powder contents. Overall acceptability was also highest in 3% added group (p < 0.01).

Friction and Wear Properties of Plasma-sprayed Cr2O3-MoO3 Composite Coatings at High Temperature (MoO3가 첨가된 Cr2O3 플라즈마 용사코팅의 고온 마찰 마멸 특성)

  • Lyo, In-Woong;Ahn, Hyo-Sok;Lim, Dae-Soon
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.9
    • /
    • pp.851-856
    • /
    • 2002
  • Tribological behavior of plasma-sprayed $Cr_2O_3$-based coatings containing $MoO_3$ at 450$^{\circ}C$ was investigated to understand the influence of $MoO_3$. A reciprocal disc-on-plate type tribo-tester was employed to examine fricition and wear behavior of the specimens. The microstructure and phase composition of the coating was characterized with Transmission Electron Microscopy(TEM). The TEM analysis indicated that $MoO_3$ was dispersed into the grain boundary, resulting in the increase of the hardness and density of the coating. Worn surfaces were investigated by scanning electron microscopy and chemistry of the worn surfaces was analyzed using a X-ray Photoelectron Spectrometer(XPS). The results showed that the friction coefficient of the $MoO_3$-added coatings was lower than that without $MoO_3$ addition. The larger protecting layers were observed at the worn surface of plasma spray coated specimens with $MoO_3$ composition in the protecting layer appears to be more favorable in reducing the friction.

Quality characteristics and antioxidant activities of rice cookies added with Lentinus edodes powder (표고버섯 분말을 첨가한 쌀 쿠키의 품질 특성 및 항산화 활성)

  • Kim, Mee-Jin;Chung, Hai-Jung
    • Food Science and Preservation
    • /
    • v.24 no.3
    • /
    • pp.421-430
    • /
    • 2017
  • This study was conducted to investigate the effect of Lentinus edodes powder on the quality characteristics and antioxidant of rice cookies. The cookies for this experiment was made by 3 main ingredients including rice powder, flour, Lentinus edodes powder. The proportion of rice powder was fixed to 50% for the total amount of ingredients. The amount of reminded 2 ingredients (flour and Lentinus edodes powder) were varied. The amount of flour was decreased up to 38%, and the addition of Lentinus edodes powder was increased to 4%, 8% and 12%. Density of the dough, hardness, total polyphenol content, DPPH free radical scavenging activity, and reducing power increased with increasing Lentinus edodes powder content. Moisture content, pH of the dough, spread factor, loss rate, leavening rate, and L values of the cookies were decreased with increasing Lentinus edodes powder content. The result of consumer acceptance test revealed that there were no significant differences in smell, taste and overall acceptability, while the preference of color decreased as the amount of Lentinus edodes powder increased. To sum up, the cookies with 12% Lentinus edodes powder can produced the best results in terms of quality and antioxidant potential.