• Title/Summary/Keyword: 폴리염화알루미늄

Search Result 17, Processing Time 0.028 seconds

Preparation of PAC for Water Treatment Chemicals Using Waste Aluminum Dross (알루미늄 폐드로스로부터 수처리응집제용 염화알루미늄 제조)

  • Park, Hyung-Kyu;Choi, Young-Yoon;Eom, Hyoung-Choon;Bae, Dong-Su
    • Resources Recycling
    • /
    • v.15 no.5 s.73
    • /
    • pp.52-56
    • /
    • 2006
  • Waste aluminum dross was leached with hydrochloric acid to prepare PAC, poly aluminium chloride, used as water treatment chemicals. Metallic aluminum remained in the waste aluminum dross was dissolved into the hydrochloric acid solution. The solution could be used as PAC after adjusting the required alumina concentration and the basicity. Comparing to the conventional method far preparation of PAC using aluminum hydroxide, material cost could be saved in this method. Also, there is an additional merit in view of recycling of the waste aluminum dross by reducing the amount of waste dross to be landfilled.

Preparation of Alum and Poly Aluminum Chloride Using Waste Aluminum Dross (알루미늄 폐드로스를 재활용(再活用)한 Alum과 Poly Aluminum Chloride 제조(製造) 연구(硏究))

  • Park, Hyung-Kyu;Lee, Hoo-In;Choi, Young-Yoon
    • Resources Recycling
    • /
    • v.16 no.5
    • /
    • pp.3-7
    • /
    • 2007
  • Waste aluminum dross was processed to prepare alum with sulfuric acid, and poly aluminum chloride(PAC) with hydrochloric acid. Metallic aluminum remained in the waste dross was dissolved into the sulfuric acid solution, and the solution could be used as alum for water treatment chemicals after adjusting the required alumina concentration and pH of the solution. Also, it was dissolved into the hydrochloric acid solution and processed to make PAC solution. Compared with the conventional method for preparation of alum and PAC using aluminum hydroxide, material cost could be saved in this method. Also, there is an additional merit in view of recycling of the waste aluminum dross by reducing the amount of waste disposed to landfill.

Synthesis of Improved Polyaluminumchloride and Its Coagulation Properties (개선된 폴리염화알루미늄의 합성 및 응집 특성)

  • Choi, Yong-Wook
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.3
    • /
    • pp.273-282
    • /
    • 2004
  • The synthetic technology of improved polyaluminiumchloride (IPAC) similar to characteristics of PACS was established with minimum expense for modifying existing production line. The conditions for activating silicate was studied before the synthesis of IPAC, and the IPAC was synthesised with raw materials such as aluminumhydroxide and concentrated hydrochloric acid, followed by adding activated silicate and alginate. The specification of product, chemical structure, and coagulating properties were tested by using specification testing method, instrumental analytical method, and Jar tester, respectively. As a result, the product, IPAC, contained aluminium oxide content more than 17%, and no precipitation was shown at all while the IPAC solution was preserved, and the larger floc and faster coagulation were represented compared to existing PAC under the same conditions. It was suggested that these synthetic technology could be applied to the existing production line for producing PAC without approximately cost raising factor because of adding sulfuric acid-activated silicate instead of sodium sulfate.

The Study on Manufacture of PACl(Polyaluminum Chloride) from Water Treatment Plant Sludges (정수장 슬러지(Alum Sludge)로부터 PACl(Polyaluminum Chloride) 응집제 제조에 관한 연구)

  • Kim, In-Bae;Lee, Sang-Bong;Kim, Dong-Youn;Kim, Boo-Gil
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.3
    • /
    • pp.441-451
    • /
    • 2000
  • Sludge produced from water treatment plants contains plenty of aluminum due to addition of coagulants, polyaluminum chloride(PACI) which has been widely used in most of water treatment plants. however. the whole of PACI is imported from other countries. In this research. the effective methods for recycling PACI from sludge of water treatment plants were developed and evaluated. Aluminum chloride hexahydrate($AlCl_3{\cdot}6H_2O$) was obtained by sparging HCl gas aluminum extracted from sludge using hydrochloric acid (HCI). This aluminum chloride hexahydrate was solidified by decomposition at $180^{\circ}C$. and dissolved in water to produce PACI. The optimum extraction rate was obtained at the condition of 10 minutes of reaction time. $105^{\circ}C$ of reaction temperature. 27.65%(W/W) of HCI concentration. The KS experiment proved that manufactured aluminum chloride hexahydrate was 98.7% degree and the recycled PACI coagulants agreed with the KS standard. The optimum temperature of decomposition was $180^{\circ}C$ and the basicity of the PACI was decided upon the extent of decomposition The compared experiments between purchased coagulant and manufactured coagulant presented that both coagulants had same performance for turbidity, DOC, $UV_{254}$ absorbance. and chlorophyll-a.

  • PDF

A Study on Coagulation and MF Membrane Process for the Reuse of Sewage Effluent (하수처리장 방류수의 응집 및 정밀여과 처리공정에 관한 연구)

  • Paik, Ke-Jin
    • Journal of environmental and Sanitary engineering
    • /
    • v.20 no.3 s.57
    • /
    • pp.36-43
    • /
    • 2005
  • Prior to the study of the sewage treatment methods, water quality for Gwangju sewage of fluent was investigated from January to December, 2004 for sewage water reuse. Monthly mean values of BOD, SS, turbidity, total phosphorus and color were 4.1 mg/L, 2.9 mg/L, 0.8 NTU, 1.3 mg/L, and 27 unit, respectively. Jar-test was performed to investigate the removal efficiency of pollutants under the coagulation conditions of fast mixing for 5 min, slow mixing for 15 min and precipitation for 1hr. Here, alum and polyaluminium chloride (PAC) were used as coagulants to reduce color, turbidity, total phosphorus (TP) and total organic carbon (TOC) in sewage effluents. The results showed that PAC gave better efficiency in removing turbidity and dissolved phosphorus than alum. It was also found from the relative molecular weight (RMW) distribution analysis that organic matter over 1,000 Dalton (Da) was easily removed by coagulation and subsequently MF treatment, while it was not effective for less than 500 Da. Based on tis result, Natural organic matter (NOM) with lower molecular weight (< 500 Da) may cause harmful disinfectant by-product (DBP) after chlorine treatment. Thus, activated carbon adsorption seems to be required for the complete removal of DBP in the hybrid system.

Synthesis and Characterizations of Aluminum Hydroxide Using NaOH Additional Amounts and Polyalmuniumchloride (Polyaluminumchloride와 NaOH 첨가량에 따른 수산화알루미늄 합성에 관한 연구)

  • Hwang, Dae Ju;Cho, Kye Hong;Choi, Moon Kwan;Ahn, Ji Whan;Han, Choon;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.205-211
    • /
    • 2010
  • The water-sewage cohesion agent(polyaluminumchloride(PAC)) and NaOH were used to synthesize $Al(OH)_3$. For various additions of NaOH, characteristics of the synthesized $Al(OH)_3$ was analysed by XRD, SEM and PSA. According to XRD analysis, small amount of NaOH(NaOH:PAC=15g:100g) resulted in amorphous form of $Al(OH)_3$. By increasing NaOH(NaOH:PAC=20g:100g), the mixture of gibbsite(37%), bayerite(35%) and boehmite(28%) were produced. By adding more NaOH(NaOH:PAC=25g:100g), binary mixtures of gibbsite(67%) and bayerite(33%) were formed. Finally, high addition of NaOH(NaOH:PAC=30g:100g) gave the high concentration of gibbsite(gibbsite:bayerite=83:17). Also, SEM analysis indicated that the product featured the plate form with 20 and 30g of NaOH addition. Furthermore it was found that the particle size of the product decreased with the addition of NaOH.

Effects of Vanadate Solution Property on the Precipitation of Ammonium (Meta, Poly)Vanadate (바나데이트 수용액 특성이 암모늄(메타, 폴리)바나데이트 침전에 미치는 영향)

  • Ho-Sung Yoon;Seo Jin Heo;Yujin Park;Rina Kim;Chul-Joo Kim;Kyeong Woo Chung;Hong In Kim
    • Resources Recycling
    • /
    • v.32 no.3
    • /
    • pp.26-37
    • /
    • 2023
  • Good control of the solution pH and temperature is required to recover vanadium from the water leaching solution of vanadium ore after sodium roasting. However, such adjustments could lead to aluminum-vanadium and sodium-vanadium co-precipitation, which greatly affects the efficiency of vanadium recovery. In this study, a process that can increase the efficiency of vanadium recovery as ammonium metavanadate [NH4VO3] and ammonium polyvanadate [(NH4)2V6O16·H2O] was investigated by examining the characteristics of vanadium-containing aqueous solutions during precipitation. The aluminum content of vanadium-containing water leaching solutions has a great effect on the loss of vanadium when the pH of the aqueous solution is adjusted to 9. Therefore, a process to minimize aluminum leaching is also required. In this study, ~99% or more of vanadium present in vanadium-containing aqueous solutions was precipitated and recovered as NH4VO3 by adding 3 equivalents of ammonium chloride relative to the vanadium content at pH 9 and room temperature. (NH4)2V6O16·H2O was precipitated from the aluminum-vanadium coprecipitates generated during the pH-adjustment of the aqueous solutions to 9 by dissolving the coprecipitate in the solutions at pH 2.5 and controlling their sodium content to 2,000 mg/L or less. Approximately, 98% or more of the available (NH4)2V6O16·H2O could be precipitated and recovered from a solution with a vanadium content of 2,200 mg/L and a sodium content of 1,875 mg/L at pH 2.5 by adding approximately 3 equivalents of ammonium chloride relative to the vanadium content at 95℃ or higher. The overall process could precipitate and recover, approximately 91% or more of the total vanadium in the water leaching solution as NH4VO3 and (NH4)2V6O16·H2O.

Comparison of the characteristics of Al(III) hydrolyzed species by improved ferron assay test (개선된 Ferron 분석 비교를 통한 Al(III) 가수분해종 특성 연구)

  • Yoon, Mihyoung;Kang, Limseok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.36 no.3
    • /
    • pp.177-186
    • /
    • 2022
  • In this study, newly improved Ferron assay test haved on timed spectrometry was used for the determination of hyolrolytic Al species presented in PACl coagulant. The color development reagent ferron was prepared by using conventional method and two newly developed methods. Then the ferron assay test was used to compare and analyze the distribution of Al(III) hydrolyzed species presented in the prepared PACl and alum. The preparing method of reagent A required an aging period of 7 days by adding a hydroxylamine hydroxide and a 1,10-phenanthroline monohydrate reagent, whereas the preparing method of reagent B was used as a coloring agent immediately without aging time. The regression analysis between UV absorbance and Al concentrations of conventional method and newly developed method of ferron reagents in low-concentration aluminum solutions and high-concentration aluminum solutions, showed the correlation coefficients of 0.999 or higher, as showing high correlations of conventional method and newly developed method. Applying Ferron assay test, Al species in the PACls and alum were classified as Ala(monomeric Al), Alb (polymeric Al), and Alc (colloidal and precipitated Al). Distribution of Al(III) hydrolyzed species according to the preparation of ferron colorimetric reagents was similar.

Improvement of Water Treatment Efficiency by Poly Aluminum Chloride Overdosing in High pH Raw Water (폴리염화알루미늄 과량주입에 의한 고(高) pH 원수의 수처리효율 개선)

  • Lim, Jaecheol;Kim, Jinkeun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.1
    • /
    • pp.39-46
    • /
    • 2009
  • A method to improve water treatment efficiency by coagulant overdosing for high pH raw water at a drinking water treatment plant (WTP) which had no pH adjusting facilities was investigated. Poly aluminum chloride (PACl) was used for coagulant, and turbidity removal efficiency was evaluated as a function of PACl dosage increases. pH and turbidity of supernatant of jar-tester were 7.10 and 0.50 NTU respectively, when the turbidity, pH, alkalinity, water temperature, conductivity of raw water were 1.75 NTU, 9.38, 46.5 mg/L, $6.4^{\circ}C$, $400{\mu}s/cm$, respectively. Turbidity of settled water was reduced from 2.18 NTU to 0.28 NTU (87% reduction) when PACl dosage was increased from 16 mg/L to 45 mg/L at a full scale WTP. This can be attributed to the recovery of coagulant efficiency by pH reduction with the increase of coagulant dose, however coagulation efficiency was reduced with the formation of Al(OH)4- by PACl addition at higher pH. Coagulant overdosing was proven to be a rapid and effective method for high pH raw water, which can be applied at drinking WTP.