• Title/Summary/Keyword: 폭연에서 폭굉으로 천이

Search Result 2, Processing Time 0.016 seconds

Modeling of Damage Caused to Injectors Used in Pulverized-Coal-Oxygen-Combustion Furnace (순산소와 미분탄 가스 연소에 의한 용융로 풍구 선단부 손상 모델링: 폭굉 압력파에 의한 영향)

  • Gwak, Min-Cheol;Kwon, Ki-Woong;Lee, Sang-Ho;Yoh, Jai-Ick
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.11
    • /
    • pp.957-964
    • /
    • 2010
  • The deflagration-to-detonation transition (DDT) causes a strong pressure wave that can adversely affect surrounding structures. The pressure generated by multiple detonative pulses is strong enough to cause metal surface erosion and chipping of the edges of bulk structures. In this study, we investigate the damage caused by the DDT phenomenon and perform hydrocode simulations to evaluate the structural damage caused to a metallic pulverized-coal injector used in a pulverized-coal-oxygen combustion furnace. The experimental conditions are selected in order to accurately model the damage caused to metal injectors that are exposed to multiple DDT pulses.

Deflagration to detonation transition by interaction between flame and shock wave in gas mixture (가스 연료와 공기 혼합물 내 압력파와 화염의 상호 작용에 의한 연소폭발천이 현상 연구)

  • Gwak, Min-Cheol;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.369-374
    • /
    • 2010
  • This paper presents a numerical investigation of the Deflagration to Detonation Transition (DDT) of flame acceleration by a shock wave in combustible gas mixture. A model consisting of the reactive compressible Navier-Stokes equations is used. The effects of viscosity, thermal conduction, species diffusion, and chemical reactions are included. Using this model, the generation of hot spots by repeated shock and flame interaction in front and back of flame and the change of detonation occurrence by various shock intensities (Ms=1.1, 1.2, 1.3) are studied. The simulations show that as the incident shock intensity increases, the Richtmyer-Meshkov (RM) instability becomes stronger and DDT occurrence time is reduced.

  • PDF