DOI QR코드

DOI QR Code

Modeling of Damage Caused to Injectors Used in Pulverized-Coal-Oxygen-Combustion Furnace

순산소와 미분탄 가스 연소에 의한 용융로 풍구 선단부 손상 모델링: 폭굉 압력파에 의한 영향

  • Received : 2009.11.02
  • Accepted : 2010.08.27
  • Published : 2010.11.01

Abstract

The deflagration-to-detonation transition (DDT) causes a strong pressure wave that can adversely affect surrounding structures. The pressure generated by multiple detonative pulses is strong enough to cause metal surface erosion and chipping of the edges of bulk structures. In this study, we investigate the damage caused by the DDT phenomenon and perform hydrocode simulations to evaluate the structural damage caused to a metallic pulverized-coal injector used in a pulverized-coal-oxygen combustion furnace. The experimental conditions are selected in order to accurately model the damage caused to metal injectors that are exposed to multiple DDT pulses.

본 연구에서는 친환경 연소로서 순산소 연소의 내제한 문제점에 대하여 논의하고 있다. 그 중 DDT의 발전에 의해 발생되는 강한 압력 충격파에 의한 구조물의 손상에 대한 내용을 다루고 있다. 이를 위하여 DDT에 대해 인식시키기 위하여 기본적인 개념과 더불어 이를 발전시키는 요인들에 대해서 논의해 보았다. 그리고 순산소 연소의 DDT 발생에 의한 압력파 생성과 더불어 이에 따른 구조물 손상을 설명하기 위하여 순산소 연소를 사용하는 친환경 용융로(미분탄과 순산소 연소를 사용한 용융로) 내부의 풍구 손상을 AUTODYN hydrocode를 이용하여 모델링하였다. 이를 통하여 순산소 연소에 내제된 위험성에 대하여 살펴보았다.

Keywords

References

  1. Baukal. C. E., 1998, "Oxygen-Enhanced Combustion," CRC Press, Vol. 23, No. 5, pp. 137-145.
  2. Buhre. B, J. P., Elliott. L. K., Sheng. C. D., Gupta. R. P. and Wall. T. F., 2005, "Oxy-Fuel Combustion Technology for Coal-Fired Power Gerneration," Progress in Energy and Combustion Science, Vol. 31, pp. 283-307. https://doi.org/10.1016/j.pecs.2005.07.001
  3. Ciccarelli. G. and Dorofeev. S., 2008, “Flame Acceleration and Transition to Detonation in Ducts,” Progress in Energy and Combustion Science, Vol 34, pp. 499-550. https://doi.org/10.1016/j.pecs.2007.11.002
  4. Hsu. Y. C. and Chao. Y. C., 2009, "An Experimental Study on Flame Acceleration and Deflagratio to Detonation Transition in Narrow Tubes," 7th Asia-Pacific Conference on Combustion.
  5. Oran. E. S. and Gamezo. V. N., 2007, "Originas of the Deflagration to Detonation Transition in Gas Phase Combustion," Combustion and Flame, Vol. 148, pp. 4-47 https://doi.org/10.1016/j.combustflame.2006.07.010
  6. Gamezo, V. N., Ogawa. T. and Oran. E. S., 2008, "Flame Acceleration and DDT in Channels with Obstacles: Effect of Obstacle Spacing," Combustion and Flame, Vol. 155, pp. 302-315. https://doi.org/10.1016/j.combustflame.2008.06.004
  7. Kuznetsov. M., Ciccarelli. G., Dorofeev. V., Alekseev. V., Yankin. Y. and Kim. T. H., 2002, "DDT in Methane-Air Mixture," Shock Wave, Vol. 12, pp. 215-220. https://doi.org/10.1007/s00193-002-0155-0
  8. Hluschko. S. and Ciccarelli. G., 2008, "Interaction of a High-Speed Combustion Front with a Closely Packed Bed of Spheres," Shock Waves, Vol. 18, pp 317-327. https://doi.org/10.1007/s00193-008-0132-3
  9. Kaneshige. M. and Shepherd. J. E., 1999, "Detonation Database," Graduate Aeronautical Laboratories California Institute of Technology Pasadena, CA991125.
  10. Fedorov. A. V., Khmel. T. A., 2002, "Mathematical Simulation of Detonation Processes in a Coal-Particle Suspension," Combustion, Explosion, and Shock Waves, Vol. 38, No. 6, pp. 700-708. https://doi.org/10.1023/A:1021152630365
  11. Tham, C. Y., 2005, "Reinforced Concrete Perforation and Penetration Simulation Using AUTODYN-3D," Finite Elements in Analysis and Design, Vol. 41, pp. 1401-1410 https://doi.org/10.1016/j.finel.2004.08.003
  12. Tillotson. J. H., 1962, "Matallic Equations of State for Hypervelocity Impact," Air Force Special Weapone Center.