• Title/Summary/Keyword: 폭약 직경

Search Result 9, Processing Time 0.023 seconds

The Effect of Performance on Loading Impact of Emulsion Explosive in Long Vertical Borehole (에멀젼 폭약의 수직 장공 장약 시 낙하 충격에 의한 성능 영향)

  • Lee, Young-Ho;Lee, Seung-Chan;Lee, Eung-So
    • Explosives and Blasting
    • /
    • v.25 no.1
    • /
    • pp.45-52
    • /
    • 2007
  • When emulsion explosives(1kg/cartridge) are loaded into a long vertical borehole at open blasting site, they undergo an Impact corresponding to 117.6J of shock energy. After shocking. the crystallization of emulsion nay happen immediately. Furthermore, it nay cause a desensitization, arising from increase in the density of emulsion explosive by the breakage of sensitizer. In this paper, some experimental work was performed using PVC pipe equipment(50mm diameter and 12m lengths) to investigate the effects of loading impart of emulsion explosive. It is shown that detonation energy decreases up to 26% of the normal state value and this effect is less than 3% of the total performance of emulsion explosives in borehole blasting.

A Study on the Gap Test for Safe Storage of Explosives (안전한 화약류 저장을 위한 순폭 실험 연구)

  • Kim, Jun-Ha;Jung, Seung-Won;Kim, Jung-Gyu
    • Explosives and Blasting
    • /
    • v.40 no.3
    • /
    • pp.33-43
    • /
    • 2022
  • In order to minimize the impact on the structure during an internal explosion, the explosives storage must be kept at a distance from the inner wall to prevent the sympathetic detonation of the others explosives in an unexpected explosion. For safe explosives storage, a gap test was conducted by simulating the split arrangement of explosives inside the storage. In this study, the separation distance and arrangement between the emulsion explosives were applied differently to be sympathetic detonation at 2D of diameter and non-detonated at 2.5D. Considering the coefficient of detonation transmission and the size of the explosives storage, the explosive amount of 3kg was set, and most of the gap tests according to various arrangement changes were non-detonated, and safety was confirmed when applying the batch.

A Study on the Shock Compaction of Ceramic Powders using Explosive (폭약을 이용한 세라믹분말의 충격고화에 관한 연구)

  • Kim, Young-Kook;Kim, See-Jo;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.22 no.2
    • /
    • pp.157-161
    • /
    • 2012
  • ZnO-98% and $Ga_2O_3$-2% powder were consolidated by shock compaction technique, which uses a high performance explosive. The microstructural and electrical characteristics of $ZnOGa_2O_3$ compact with density of 97% and hardness of 220~250 $H_v$ were investigated using SEM (Scanning Electron Microscope) and X-ray diffraction analysis, respectively. In the microstructures of the compact, there were no visible cracks at most of the surface areas, and interparticle bonding between powder particles was confirmed. The broadened peaks were detected due to deformation of crystallited size and high electric resistances were confirmed due to increased grains because of shock energy with a high pressure and high velocity.

Experimental Study on the Size Distribution of Fragmentation by Effects of Drilling Pattern and Time Delay Using the Sequential Blasting Machine (천공패턴 및 기폭시차의 변화에 의한 파쇄암의 입도 분포 연구)

  • 이춘우;양형식;송승근
    • Explosives and Blasting
    • /
    • v.18 no.4
    • /
    • pp.43-54
    • /
    • 2000
  • 본 연구에서는 계단식 발파에서 파쇄입도에 영향을 미치는 변수들로부터 대괴를 줄이는 새로운 발파패턴을 제시하고자 하였다. 광주 제2순환도로 대절토 구간에서 천공경, 1회발파공수, 화약의 종류 등의 영향을 파쇄암의 평균입자의 크기와 상위 5개의 대괴 평균치로 나타내었다. 그 결과 대괴의 크기는 평균 파쇄암의 크기와 선형적인 추이를 나타내었으며 평균파쇄도는 저폭속 폭약인ANFO가 NewMITE 보다 좋은 결과를 보였다. 또 천공경 65 mm와 75 mm로 ANFO즉 사용했을 때 파쇄도는 약포의 직경이 작은 경우에 파쇄도가 양호하게 나타났고 총공수와 파쇄도를 살펴본 결과 평균파쇄도와 대괴의 크기는 대제적으로 총공수의 증가에 비례하여 커지는 경향이었으며 평균파쇄도 보다는 대괴의 크기가 증가의 폭이 컸다. 한편 첫째 열을 2단 분리장약했을 때가 일반 발파나 1열 소단벤치발파 때보다 파쇄도가 좋았다.

  • PDF

The Study on Blast Effects of Stemming Materials by Trauzl Lead Block Test and High Speed 3D-DIC Systems (트라우즐 연주시험 및 고속 3차원 이미지영상상관 기법을 이용한 전색재 별 발파효과에 대한 연구)

  • Ko, Younghun;Seo, Seunghwan;Kim, Sik;Chung, Youngjun;Chung, Moonkyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.10
    • /
    • pp.13-25
    • /
    • 2021
  • The most widely used method for determining the blast effects of explosives is the Trauzl test. This test is used to measure the explosive power (strength) of a substance by determining volume increase, which is produced by the detonation of a tested explosive charge in the cavity of a lead block with defined quality and size. In this paper, Trauzl lead block test and High speed 3D-DIC (Digital Image Correlation) system were conducted to evaluate the stemming effect of the blast hole. The effects of stemming materials can be expressed as the expansion of the cavity in a standard lead block through explosion of the explosives. The blasting experiment was conducted with emulsion explosives. The stemming material in the blast hole of lead block, which was adopted in this study, were using sand and stone chips. Results of blasting experiment and numerical analysis showed that the expansion rates of lead block were most affected by stone chips followed by sand. Also, as result of dynamic strain measurement on the lead block surface of High speed 3D-DIC system, the displacement and surface strain on the block were the highest in the experiment case of stone chips stemming.

Numerical Study on the Reduction of Blast-induced Damage Zone (최외곽공 주변암반의 발파굴착 손상영역 저감에 관한 수치해석적 연구)

  • Park, Se-Woong;Oh, Se-Wook;Min, Gyeong-Jo;Fukuda, Daisuke;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.37 no.3
    • /
    • pp.25-33
    • /
    • 2019
  • Controlling the blast-induced damage zone(BDZ) in mining excavation is a significant issue for the safety of employees and the maintenance of facilities. Numerous studies have been conducted to accurately predict the BDZ in underground mining. This study employed the dynamic fracture process analysis (DFPA) to estimate the BDZ from a single hole blasting. The estimated BDZ were compared with the results obtained by Swedish empirical equation. The DFPA was also used to investigate the control mechanism of BDZ and fracture plane formation around perimeter holes for underground mining blasting.

A Case Study on the Boring-Hole Blasting for Offering of the Ground Vibration Source (지진동 Source 제공을 위한 심부 시추공발파 기술사례)

  • 조영곤;김희도;조준호
    • Tunnel and Underground Space
    • /
    • v.13 no.3
    • /
    • pp.187-195
    • /
    • 2003
  • This case study which is to make 2-Dimension earth's crust structures clearly is about the great boring-hole blasting to provide ground vibration source of the reflected wave research on the Korean Peninsula earth's crust structures research. For this study we've done blasting twice-500 ㎏/charge per delay, 1,000 ㎏/charge per delay, and the specifications of blasting are the following - dia.: 300 ㎜, boring-depth : 100m, besides, we used the explosives and electric detonators which have sufficient detonating velocity and very excellent safety, capacity of detonating, accurate delay time. We charged explosives into steel pipe with bulk type to avoid dead pressure by ground water. And then we tested about pipe airtight and blasting to certificate which has no problem by using on this study. In the results, we succeeded each blasting in Seosan, Youngdong. For the Peak Sum Vector(PSV) around the blasting at the main points, its real measured PSV is higher 180 % than estimated PSV with USBM. In this study we can't to be analysis of vibration velocity, but to be key providing vibration source.

Numerical Analysis on Effect of Stemming Condition in Mine Ventilation Shaft Blasting (광산 통기수갱발파에서 전색조건이 발파효율에 미치는 영향에 관한 수치해석적 연구)

  • Kim, Jun-ha;Kim, Jung-gyu;Jung, Seung-won;Ko, Young-hun;Baluch, Khaqan;Kim, Jong-gwan
    • Explosives and Blasting
    • /
    • v.39 no.3
    • /
    • pp.15-23
    • /
    • 2021
  • Ventilation shafts are pathways in mines and tunnels for the removal of dust or smoke during underground space construction and operation. In mines, blasting with long blast holes is preferred for the excavation of a ventilation shaft in the 10~20m long crown pillar section. In this case, the bottom part of the blast hole is completely drilled in order to determine the drilling error, and this causes a problem of lowering the explosive charge and blasting efficiency. It is possible to solve the problem of explosive loading and to increase the blast efficiency by covering the curb of the blasthole by using stemming material. In this study, simulations for the blasting of a ventilation shaft were performed with various stemming lengths and the blasthole diameters(45, 76mm) using AUTODYN 2D SPH(Smooth particle hydrodynamics) analysis technique. Also the optimal bottom stemming column was derived by checking the size of the boulder and burden line according to blasting. Analysis result, blasting efficiency is lessened in case of stemming length less than 30cm and the optimal length of the stemming material should be 30cm or higher to achieve high efficiency of blasting.

The Study on the Fragment Ejection Velocity and Spray Angle from a High Explosive Cylindrical Warhead (실린더형 HE 탄두 폭발 시 파편의 속도 및 발사각 추정방법 연구)

  • Hwang, Changsu;Park, Younghyun;Park, Seikwon;Jung, Daehan;Lee, Moonsik;Kang, Sunbu;Kim, Deuksu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.12
    • /
    • pp.904-912
    • /
    • 2019
  • We have studied the numerical analysis about the fragment ejection velocity and spray angle when the High Explosive warhead detonated at proximity distance at an aircraft. To study the physical quantities about the warhead components is very important to assessment the vulnerability of aircraft. Generally, the physical quantities about the components of a warhead such as the mass, length, diameter and charge to mass ratio are unknown. Therefore, it is required to estimate the physical quantities by using physical continuities of similar threats. The empirical formulas to understand the dependence among charge to mass ratio, length and diameter ratio were driven by using the physical parameters of similar threatening such as terrier, sparrow. As a result, we confirmed that the dead mass ratio was closed to 20% of warhead mass since the metal case of the proximity threat acts as a simple carrier. This implies that the effective length and diameter of High Explosive Compound is smaller than the length and diameter of warhead, and become a key to understand the large ejection gradient velocity and small spray angle of fragments within 6 degree.