• Title/Summary/Keyword: 폭발효과

Search Result 372, Processing Time 0.026 seconds

Calculation of Blast Load Including Interior Explosion Effects (실내폭발 효과를 포함한 폭발하중 산정)

  • Kim, Seong-Hwan;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.3
    • /
    • pp.191-198
    • /
    • 2017
  • To study the behavior of structures subject to blast loads it is important to calculate the loads due to the explosives accurately, especially in the case of interior explosions. It is known that numerical method based on computational fluid dynamics can estimate relatively accurate blast load due to the interior explosion including reflection effect. However, the numerical method has disadvantages that it is difficult to model the analysis and it takes much time to analyze it. Therefore, in this study, the analytical method which can include the reflection effect of the interior explosion was studied. The target structures were set as the slabs of residential buildings subject to interior explosion that could lead to massive casualties and progressive collapses. First, the numerical method is used to investigate the interior explosion effect and the maximum deflection of the slab which was assumed to be elastic, and compared with the analytical method proposed in this study. In the proposed analytical method, we determine the weighting factor of the reflection effect using the beam theory so that the explosion load calculation method becomes more accurate.

Production of Realistic Explosion Effects through Four Types of Solutions (4가지 솔루션을 통한 사실적인 폭발효과 제작)

  • Kim, Dong Sik;Hwang, Min Sik;Lee, Hyun Seok;Kim, Yong Hee;Yun, Tae Soo
    • Smart Media Journal
    • /
    • v.4 no.4
    • /
    • pp.120-129
    • /
    • 2015
  • Explosion effect on CG (Computer Graphic) a visual effect on which a higher degree of technological difficulty is required with a variety of effect elements such as Fire, Smoke, Flame, Dust, Debris, etc. integrated on it. As skills for CG software have been advanced, solutions loaded with functions of various fluid simulation have been developed. So more realistic special effects came to be available. However, in Korea, it depends just on CG program functions. Besides, enough R&D's concerned have not been followed up. Accordingly, this study is aimed at offering a production method that may effectively implement more realistic explosion effects under experimentations. To begin with, the study derives problems through a precedent study of the implementation of existing explosion effects. Then to solve them, experimental studies are performed depending on four solutions. There are accesses to the four solutions: first, Numerous Turbulent Flow, a method to allow an attribute of turbulent air in the stage of fluid simulation; second, Cache Retiming Solution produced in script; third, Multiple Volume Container based on cached data; and fourth, RGB Lighting Pipeline, a method to enhance the completion of the result from the stage of composition. Characteristics of effects applied in each stage and consecutive connections of them proved the effective implementation of more realistic explosion effects. This study may not only suppose the production method for efficient explosion effects differentiated from the previous ones but also be utilized as basic data for relevant researches.

Influence of Negative Emotion on the Suicidal Ideation in University Student: Mediated Moderating Effect of Explosive Behavior through Gender (대학생의 부정적 정서가 자살생각에 미치는 영향: 성별을 통한 폭발적 행동의 매개된 조절효과)

  • Jeong, Goo-Churl
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.12
    • /
    • pp.775-784
    • /
    • 2014
  • The purpose of this study was to identify the mediated moderating effect of explosive behavior through gender between negative emotion and suicidal ideation. It was conducted to measure depression, anxiety, explosive behavior and suicidal ideation from 644(322 male, 322 female) university students. The mediated moderating effect was analyzed through hierarchical regression analysis and path analysis. And the results of simple slope test were presented graphically. As a result of analysis, first, there were positive relationship among negative emotion, explosive behavior and suicidal ideation. Second, gender had significant moderating effect within the relationship of negative emotion and suicidal ideation. Third, explosive behavior had significant mediating effect within the relationship of negative emotion and suicidal ideation. Forth, gender had significant moderating effect within the relationship of explosive behavior and suicidal ideation. Implications of these results were explored in relation to the importance of negative emotion and explosive behavior that could be taken to improve suicidal ideation according to gender. In addition, this implication and suggestions for future research are provided.

Progressive Collapse Analysis of Reinforced Concrete Core Structure Subjected to Internal Blast Loading (내부 폭발하중을 받는 철근콘크리트 코어의 연쇄붕괴 해석)

  • Kim, Han-Soo;Ahn, Jae-Gyun;Ahn, Hyo-Seong
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.715-722
    • /
    • 2014
  • In this paper, internal blast effect of reinforced concrete core structure were investigated using Ansys Autodyn, which is a specialized hydrocode for the analysis of explosion and impact. It is expected that internal blast case can give additional damage to the structure because it causes rebound of blast loads. Therefore, in this paper, the hazard of internal blast effect is demonstrated using UFC 3-340-02 criteria. In addition, analysis result of Autodyn, experimental result regarding rebound of blast load, and example of UFC 340-02 are compared to verify that Autodyn can analyze internal blast effect properly. Furthermore, progressive collapse mechanism of core structure which is one of the most important parts in high rise buildings is also analyzed using Autodyn. When internal blasts are loaded to core structure, the core structure is mostly damaged on its corner and front part of core wall from explosives. Therefore, if the damaged parts of core wall are demolished, progressive collapse of the core structure can be initiated.

도시가스 - 공기혼합기체의 폭발특성에 관한 연구

  • 박승호;임우섭;목연수;최재욱
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2000.06a
    • /
    • pp.136-139
    • /
    • 2000
  • 현대산업사회의 급속한 발전으로 사용이 편리하고, 깨끗한 연료인 도시가스의 사용량은 점점 더 증대될 뿐만 아니라 사용형태 또한 다양화되고 있어, 이에 따른 사고도 증가하고 있으며 사고의 규모도 대형화 되어가고 있다. 일반적으로 가스폭발의 경우 개방된 영역에서 보다 밀폐된 영역에서 발생할 경우 폭발압력에 의한 파괴효과는 더욱 증가한다. 이러한 부분에 대해 많은 학자들은 단일가스와 산화제를 혼합시킨 형태의 가스 폭발에 대한 특성을 연구하여 왔다. 그러나 산소농도의 변화에 따른 가연성가스의 폭발범위, 폭발시 초기압력의 변화, 최소점화에너지에 관한 연구는 거의 없는 실정이다. (중략)

  • PDF

Dynamic Characteristics Stiffened Blast-wall Structures Subjected to Blast Loading Considering High Strain-rate Effects (고속 변형률속도 효과를 고려한 폭발하중을 받는 보강형 방폭벽 구조의 동적 특성)

  • Kim, Gyu Dong;Noh, Myung Hyun;Lee, Jae Yik;Lee, Sang Youl
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.2
    • /
    • pp.65-74
    • /
    • 2016
  • A finite element dynamic simulation is performed to gain an insight about the stiffened blast wall structures subjected to blast loading. The simulation was verified using qualitative and quantitative comparisons for different materials. Based on in-depth examination of blast simulation recordings, dynamic behaviors occurred in the blast wall against the explosion are determined. Subsequent simulation results present that the blast wall made of the high performance steel performs much better in the shock absorption. In this paper, the existing finite element shock analysis using the LS-DYNA program is further extended to study the dynamic response of the stiffened blast wall made of the high-performance steel considering high strain-rate effects. The numerical results for various parameters were verified by comparing different material models with dynamic effects occurred in the stiffened blast wall from the explosive simulation.

Damage Evaluation of Adjacent Structures for Detonation of Hydrogen Storage Facilities (수소저장시설의 폭발에 대한 인접 구조물의 손상도 평가)

  • Jinwon Shin
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.1
    • /
    • pp.61-70
    • /
    • 2023
  • This study presents an analytical study of investigating the effect of shock waves generated by the hydrogen detonation and damage to structures for the safety evaluation of hydrogen storage facilities against detonation. Blast scenarios were established considering the volume of the hydrogen storage facility of 10 L to 50,000 L, states of charge (SOC) of 50% and 100%, and initial pressures of 50 MPa and 100 MPa. The equivalent TNT weight for hydrgen detonation was determined considering the mechanical and chemical energies of hydrogen. A hydrogen detonation model for the converted equivalent TNT weight was made using design equations that improved the Kingery-Bulmash design chart of UFC 3-340-02. The hydrogen detonation model was validated for overpressure and impulse in comparison to the past experimental results associated with the detonation of hydrogen tank. A parametric study based on the blast scenarios was performed using the validated hydrogen detonation model, and design charts for overpressure and impulse according to the standoff distance from the center of charge was provided. Further, design charts of the three-stage structural damage and standoff distance of adjacent structures according to the level of overpressure and impact were proposed using the overpressure and impulse charts and pressure-impulse diagrams.

An Evaluation of Blast Resistance of Partially Reinforced CFT Columns using Computational Analysis (전산해석을 이용한 부분 보강된 CFT 기둥의 폭발저항성능 평가)

  • Kim, Han-Soo;Wee, Hae-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.503-510
    • /
    • 2015
  • In this paper, the blast resisting performance of partially reinforced CFT columns was compared with the normal CFT columns to evaluate the effect of reinforcing with steel plates. Autodyn which is a specialized hydro-code for analysis of explosion and impact was used to simulate the structural behavior of the CFT columns under the blast loadings. The interaction between concrete and surrounding steel plates was modeled with friction and join option to represent the realistic damage of columns. According to the analysis, the partially reinforced CFT column showed enhanced blast resisting performance than the normal CFT columns. Also the improvement of blast resisting performance was depended on the height of reinforcing steel plates.

Analyses of Size of Solidified Particles in Steam Explosions of Molten Core Material (원자로 물질의 증기폭발에서 고화 입자 크기 분석)

  • Park, Ik-Kyu;Kim, Jong-Hwan;Min, Beong-Tae;Hong, Seong-Wan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1051-1060
    • /
    • 2010
  • The effect of materials on fuel coolant interactions (FCIs) was analyzed on the basis of a solidified particle size response for TROI experiments.$^{(1)}$ The solidified particle size response can provide an understanding of the relationship among the initial condition, the mixing, and an explosion. Through a comparison of the size distributions of the solidified particles in the case of explosive and non-explosive FCIs, it is revealed that an explosive FCI results in the production of a large amount of fine particles and a small amount of large particles. The material effect of the size of solidified particles was analyzed using non-explosive FCIs without losing the information on the mixing. This analysis indicates that an explosive melt includes large particles that participate in the steam explosion, whereas a nonexplosive melt includes smaller particles and finer particles.

A study of dust explosion about stock feed (사료분진의 폭발특성에 관한 연구)

  • Hong, Hyeon-Gyeong;Sa, Min-Hyeong;Lee, Hong-Ju;Kim, Yun-Seon;U, In-Seong
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2010.11a
    • /
    • pp.277-281
    • /
    • 2010
  • 본 연구에서는 사료분진의 폭발 특성을 연구하여 분진에 의한 폭발사고 위험을 감소시키고 방지대책에 필요한 기초자료를 제공하기 위해 Hartman1)식 분진폭발장치를 사용하여 다양한 사료를 실험하였다. 실험결과로 사료농도가 폭발확률에 미치는 영향은 농도가 높을수록, 사료분진의 입경이 작을수록 폭발확률이 커지고 분진농도가 증가할수록 폭발압력이 증가하였으나 일정농도를 넘어서면 오히려 폭발압력이 감소하는 경향을 보였으며 불활성물질을 첨가할 경우에는 10%이상 첨가할 경우에 폭발억제 효과를 보였다.

  • PDF