• Title/Summary/Keyword: 폭발하한계 농도

Search Result 21, Processing Time 0.031 seconds

Investigation of Combustion Properties for Using Safe Hydrogen (안전한 수소 이용을 위한 연소특성치 고찰)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.1-6
    • /
    • 2008
  • For the safety design and operation of many gas process, it is necessary to know certain explosion limit, flash point, autoignition temperature (AIT) and minimum oxygen concentration of handling substances. Also it is necessary to know explosion limit at high temperature and pressure. In this study for the safe handling of hydrogen, explosion limit and AIT of combustion properties for hydrogen were investigated. By using the literatures data, the lower and upper explosion limits of hydrogen recommended 4.0 vol% and 77.0 vol%. Also the AIT of hydrogen with ignition sources recommended $400^{\circ}C$ at the electrically heated crucible furnace (the whole surface heating) and recommended $640^{\circ}C$ at the local hot surface. The new equations for predicting the temperature and the pressure dependence of the explosion limits of hydrogen are proposed. The values calculated by the proposed equations were a good agreement with the literature data.

  • PDF

A Study on the Comparison of Explosive Lower Limit Concentration & Thermal Specific of Wheat Powder Dust & Salicylic Acid Dust (밀가루분진 및 살리실산분진의 폭발하한농도 및 열적특성 비교에 관한 연구)

  • Ko, Jae-Sun
    • Fire Science and Engineering
    • /
    • v.26 no.4
    • /
    • pp.1-9
    • /
    • 2012
  • We have examined In order to compare each other from explosion and combustion characteristics about the dusts which collects from manufacturing process of wheat flour and cosmetics manufacturing process of functional Keratin removal soap at the small and medium enterprise style. We measured explosive pressure and explosive lower limit which follows in change of concentration change at the time of talc addition uses Hartman dust explosion apparatus, also measured weight loss and endothermic quantity uses DSC and TGA. The explosion test results show that increased explosive lower limit concentration and explosive pressure decreased by the increased ratio of the talc dust. And the DSC results show that heat flux and temperature decreased by the increased ratio of the talc dust. Also increased in raising temperature causes initial smoldering temperature to move towards low temperature section and the endothermic quantity increased on a large scale. Together the TGA results show that weight loss decreased by the increased ratio of the talc dust. From this research we have assured the successive dust explosion mechanism study will play a key role as a significant safety securing guideline against the dust explosion.

A Study on the Explosion Phenomenon and Flame Propagation of LP Gas (LP가스의 폭발 현상 및 화염전파에 관한 연구)

  • Choi, Jae-Wook;Lee, Dong-Hoon;Kim, Tae-Gn;Min, Wong-Chul;Lim, Woo-Sub;Choi, Byoung-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.2 s.35
    • /
    • pp.65-70
    • /
    • 2007
  • The explosion phenomenon and hazard estimate of LP gas, the study was examined into variation of oxygen concentration and LP gas concentration. As the result of experiment, the lower explosive limit was decreased as the increased at concentration of LP gas and 21% of oxygen concentration. Minimum oxygen concentration was 14.5%. 12.0%, 11.5% at 1.0, 1.5 and 2.0 bar respectively. And maximum explosion pressure was increased for $6.46kg/cm^2,\;9.41kg/cm^2\;and\;13.49kg/cm^2$ according to increased of pressure. The speed of flame propagation was increased as the higher with initial pressure of LP gas.

  • PDF

Gas Explosion Hazard Analysis in Domestic (가정집에서 가스폭발 위험성 분석)

  • Jo Young-Do;Kim Ji-Yun;Kim Sang-sub
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.2 s.14
    • /
    • pp.36-42
    • /
    • 2001
  • A leak of fuel gas in partially confined area creates a flammable atmosphere and give rise to an explosion, which is one of the most common accident in domestic. Observations from accident in domestic suggest that some explosions are caused by a quantify of fuel significantly less than lower explosion limit(LEL) amount required to fill the room, which is attributed to inhomogeneous mixing of leaked gas. The minimum amount of leaked gas for explosion is highly dependent on the mixing degree in the area. For lighter gas, such as methane, a high concentration tends to build up in the space from ceiling of room. But heavy gas, such as propane, a high concentration tends to build up in the space from bottom of room. This paper presents a method for analysing the explosion hazard in a room with very small amount of leaked gas. Based on explosion limit concentration, the gaussian distribution model is used to estimate the minimum amount of leak which yields a specified explosion pressure. The results demonstrate that catastrophic structural damage can be achieved with a volume of fuel gas which is less than 0.5 percent of the total enclosed volume in domestic. The method will help analyzing hazard to develop new safe device as well as investigating accident.

  • PDF

Reliability of Combustion Properties of MSDS(Material Safety Data Sheet) of tert-Amylalcohol(TAA) (tert-Amylalcohol(TAA)의 물질안전보건자료(MSDS) 연소특성치의 신뢰도)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.6
    • /
    • pp.17-24
    • /
    • 2019
  • The combustion properties of the flammable substance used in industrial fields include lower/upper flash point, lower/upper explosion limit, autoignition temperature(AIT), fire point, and minimum oxygen concentration(MOC) etc.. The accurate assessment of these characteristics should be made for process and worker safety. In this study, tert-amylalcohol(TAA), which is widely used as a solvent for epoxy resins, oxidizers of olefins, fuel oils and biomass, was selected. The reason is that there are few researches on the reliability of combustion characteristics compared to other flammable materials. The flash point of the TAA was measured by Setaflash, Pensky-Martens, Tag, and Cleveland testers. And the AIT of the TAA was measured by ASTM 659E. The lower/upper explosion limits of the TAA was estimated using the measured lower/upper flash points by Setaflash tester. The flash point of the TAA by using Setaflash and Pensky-Martens closed-cup testers were experimented at 19 ℃ and 21 ℃, respectively. The flash points of the TAA by Tag and Cleveland open cup testers were experimented at 28 ℃ and 34 ℃, respectively. The AIT of the TAA was experimented at 437 ℃. The LEL and UEL calculated by using lower and upper flash point of Setaflash were calculated at 1.10 vol% and 11.95 vol%, respectively.

Experimental Study on the Changes in the Oxygen Concentration and the Pressure at Temperature of 200 ℃ for the Assessment of the Risks of Fire and Explosion of Propylene (프로필렌의 화재 및 폭발 위험성 평가를 위한 온도 200 ℃에서 산소농도와 압력의 변화에 따른 실험적 연구)

  • Choi, Yu-Jung;Choi, Jae-Wook
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.356-361
    • /
    • 2020
  • Propylene is widely used in petrochemical manufacturing at over 200 ℃. However, since propylene is a flammable gas with fire and explosion risks, inert nitrogen is injected to prevent them. In this study, experiments were conducted using propylene-nitrogen-oxygen upon pressure changes at 200 ℃. At 21% oxygen, as pressure increased from 0.10 MPa to 0.25 MPa, lower explosion limit (LEL) decreased from 2.2% to 1.9% while upper explosion limit (UEL) increased from 14.8% to 17.6%. In addition, minimum oxygen concentration (MOC) decreased from 10.3% to 10.0%, indicating higher risks with the expanded explosive range as pressure increased. With increase of pressure from 0.10 MPa to 0.25 MPa, explosion pressure increased from 1.84 MPa to 6.04 MPa, and the rate of rise of maximum explosion pressure increased drastically from 90 MPa/s to 298 MPa/s. It is hoped that these results can be used as basic data to prevent accidents in factories using propylene.

An Experimental Study on Explosion Hazard of Dry Cleaning Solvent Recovery Machine in Laundry (세탁소 유기용제 회수건조기의 폭발 위험성에 관한 실험적 연구)

  • Choi, Jung-Min;Son, Bong-Se;Kim, Dong-Suk
    • Fire Science and Engineering
    • /
    • v.27 no.1
    • /
    • pp.39-45
    • /
    • 2013
  • This study analyzes the explosion hazard of dry cleaning solvent recovery machine in laundry shop in two aspects, i.e. combustible and ignition source, and determines the explosive conditions of this machine by conducting mockup explosion tests repeatedly, varying conditions and using real dry cleaning solvent recovery machines. As to combustibles, two kinds of combustibles used widely in Korea have been selected and tested. The flash points, LEL's, and saturation vapor pressures of those combustibles have been measured, and their explosion specific curves have been drawn, based on the results of the measurements, so that the explosion risks of those materials may be determined, depending on the temperatures. Potential voltages generated from materials for laundry and foreign materials of metals have been assumed to be the ignition sources in this application, and their potential voltages have been measured, depending on temperature, humidity, and antistatic agent, by using real materials for laundry and a potential voltage measuring device. Tests have been conducted, varying the quantities, concentrations, and operating temperatures of materials for laundry. As a result, explosions have not been generated with potential voltages of materials for laundry, but explosions have been observed when applying artificial spark energy of 2.0 mJ.

The Prediction of Flash point of Binary systems by Using Regression Analysis (회귀분석을 이용한 2성분계 인화점 예측)

  • Park, Sang-Hun;Lee, Myung-Ho;Cho, Young-Se;Na, Byoung-Gyun;Kim, Kyu-Hyun;Kim, Wan-Seop;Lee, Sung-Jin;Ha, Dong-Myeong
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.41-41
    • /
    • 2013
  • 화학산업이 발달함에 따라 화학 산업 현장에서 사용되고 있는 가연성물질들의 여러 가지 화재 및 폭발 위험이 증가되고 있으며, 화재 및 폭발의 예방 안전을 위한 화학공정설계 및 대처에 있어, 물질의 연소특성치 데이터를 필요로 한다. 인화점은 가연성 액체를 다루는 공정에서 안전한 취급과 사고방지를 위해 중요한 자료가 되며, 화재의 위험을 나타내는 지표로서 가연성액체의 액면 가까이서 인화할 때 필요한 증기를 발산하는 액체의 최저온도, 그리고 가연성증기의 포화증기압이 공기와 혼합기체의 폭발한계 하한농도와 같게 되는 온도로 정의한다. 본 연구에서는 2성분계 혼합물에 대해 인화점을 측정하였고, 측정값을 Raoult의 법칙과 다중회귀분석(Multiple Regression)을 도입하여 이론값과 비교 하였다. 따라서 본 연구에서 제시된 방법론에 의해 아직까지 밝혀지지 않은 순수가연성액체와 가연성혼합물의 인화점을 예측하는 방법을 전개하고자 하며, 실험에서 찾고자하는 자료에 도움을 주고자 한다. 본 연구를 바탕으로 혼합물의 인화점 예측 방법과 실험에서 측정한 자료를 화재 및 폭발을 방지하는 기초 자료로 제공하고자하며, 산업현장에서 취급되고 있고 위험성 평가가 되지 않은 보다 많은 물질에 대한 이론 및 실험 연구에 활용 되도록 하는데 그 목적이 있다.

  • PDF

The Measurement of Lower Flash Point for tert-Pentanol+n-Decane System Using Tag Open-Cup Tester (Tag 개방식 장치를 이용한 tert-Pentanol+n-Decane 계의 하부인화점 측정)

  • Ha, Dong-Myeong;Lee, Sungjin
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.5
    • /
    • pp.41-46
    • /
    • 2012
  • The flash point the lowest temperature at which the concentration of vapor of the substance in the air reaches the lower flammability limit(LFL), and is one of the most important physical properties used to determine the potential for fire and explosion hazards of industrial materials. The most published flash point data was for pure components and the flash points of the binary solutions that have flammable components, appear to be scarce in the literature. In the present study, the flash points of tert-pentanol+n-decane system were measured by Tag open-cup tester. The measured data were compared with the values calculated by the Raoult's law and the optimization methods based on the Wilson and NRTL equations. The calculated values by optimization methods were found to be better than those based on the Raoult's law.

Numerical Study on the Effect of Area Changes in Air Inlets and Vent Ports on the Ventilation of Leaking Hydrogen (급·배기구 면적 변화가 누출 수소 환기에 미치는 영향에 관한 수치해석적 연구)

  • Lee, Chang-Yong;Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.385-393
    • /
    • 2022
  • Hydrogen has reduced greenhouse gas (GHG) emissions, the main cause of global warming, and is emerging as an eco-friendly energy source for ships. Hydrogen is a substance with a lower flammability limit (LFL) of 4 to 75% and a high risk of explosion. To be used for ships, it must be sufficiently safe against leaks. In this study, we analyzed the effect of changes in the area of the air inlet / vent port on the ventilation performance when hydrogen leaks occur in the hydrogen tank storage room. The area of the air inlet / vent port is 1A = 740 mm × 740 mm, and the size and position can be easily changed on the surface of the storage chamber. Using ANSYS CFX ver 18.1, which is a CFD commercial software, the area of the air inlet / vent port was changed to 1A, 2A, 3A, and 5A, and the hydrogen mole fraction in the storage chamber when the area changed was analyzed. Consequently, the increase in the area of the air inlet port further reduced the concentration of the leaked hydrogen as compared with that of the vent port, and improved the ventilation performance of at least 2A or more from the single air inlet port. As the area of the air inlet port increased, hydrogen was uniformly stratified at the upper part of the storage chamber, but was out of the LFL range. However, simply increasing the area of the vent port inadequately affected the ventilation performance.