• 제목/요약/키워드: 폭발위험장소

검색결과 47건 처리시간 0.023초

폭발위험장소 구분도의 3D Modeling을 통한 점화원 및 가연물 안전관리 방안 제안: 실내 혼합공정을 중심으로 (Proposal for Ignition Source and Flammable Material Safety Management through 3D Modeling of Hazardous Area: Focus on Indoor Mixing Processes)

  • 김학재;김덕한;천영우
    • 한국재난정보학회 논문집
    • /
    • 제20권1호
    • /
    • pp.47-59
    • /
    • 2024
  • 연구목적: 인화성 액체의 누출형태에 따라 제조업 사업장 내 화재·폭발사고를 예방하기 위해 기존 폭발위험장소 구분도를 개선하여 점화원 및 가연물을 안전하게 관리할 수 있는 방안을 제안하고자 한다. 연구방법: 「KS C IEC 60079-10-1」를 사용하여 폭발위험장소를 계산했으며, 계산된 폭발위험거리를 3D로 폭발위험장소를 구현하였다. 또한, 3D를 통해 구현된 폭발위험장소 내 인화성 증기의 대기확산량을 계산하기 위해 「P-91-2023」 액체의 대기확산량 공식을 활용하였다. 연구결과: 폭발위험장소를 3D로 표현했을 때 평면도의 사각지대를 확인할 수 있었으며, 폭발위험장소 내 점화원을 즉각적으로 확인 가능하였다. 다음으로 가연물은 3D로 나타난 폭발위험장소 체적 내 LEL 도달시간을 계산했을 때, 폭발위험거리와 동일하게 위험도가 나타나지 않았다. 결론: 인화성 액체의 대기확산량을 고려하여 안전관리가 이루어져야 할 것으로 판단하였다. 따라서 사업장에서 현실적으로 시행할 수 있는 환기량으로 감지·경보가 필요한 농도값을 계산하는 방법을 제안하였다.

인화성액체 취급 연구실의 폭발위험장소 구분에 관한 기준 적용 연구 (A Study on the Application of Criteria for the Classification of Explosive Hazardous Areas in Flammable Liquid Handling Laboratories)

  • 김민호;이준서;김은희;마병철
    • 한국가스학회지
    • /
    • 제26권6호
    • /
    • pp.1-8
    • /
    • 2022
  • 화학 산업의 발전에 따라 관련 사고가 빈번하게 발생하고 있으며 그 가운데 화재·폭발 사고가 큰 비중을 차지하고 있다. 화재 · 폭발 사고를 방지하기 위해 인화성액체를 취급하는 장소 등은 관련 법령에 근거하여 한국산업표준(KS C IEC60079-10-1)에 따라 폭발위험장소를 구분하도록 하고 있다. 이는 인화성액체를 취급하는 연구실에도 동일하게 적용된다. 본 논문에서는 연구실에서 인화성액체가 누출되어 증발 풀(pool)을 형성하는 경우 한국산업표준에 따른 폭발위험장소 구분 절차의 적용성과 환기속도의 변화가 누출특성에 미치는 영향을 확인하였다. 이를 통해 연구실과 같은 장소는 한국산업표준에 따른 폭발위험장소 구분에 대한 기준적용이 어려우며, 별도의 안전대책이 마련되어야 함을 알 수 있었다.

잠재적 폭발위험장소에서 내연기관에 의한 점화 위험성에 관한 연구 (Study of the Risk of Ignition due to Internal Combustion Engines in Areas with Potentially Explosive Gas Atmospheres)

  • 김윤석;이동호
    • 한국화재소방학회논문지
    • /
    • 제30권5호
    • /
    • pp.1-8
    • /
    • 2016
  • 국내외의 가연성 또는 인화성물질을 취급하는 대형설비에서의 폭발위험장소에 대한 안전관리는 기업의 지속가능경영과 신뢰를 바탕으로 한 지역사회와의 공존에 있어 매우 중요하다. 폭발위험장소의 안전관리는 크게 가연성 또는 인화성 물질의 누출을 제어하는 시스템과 이러한 가연성 또는 인화성물질이 누출되어 폭발분위기를 형성할 때 점화원을 제어함으로써 화재 또는 폭발사고로 전이되지 않도록 하는 방폭시스템이 있다. 제도와 기술로 인해 전기적 점화원에 대한 방폭설비는 상당히 보급되어 관리되고 있다. 하지만 열적 점화원의 경우, 위험성에 대한 인식과 관련 기술개발이 미흡하다. 본 연구는 잠재적 폭발위험장소에서 내연기관의 점화 위험을 보고하기 위하여 수행되었다. 이를 위하여 문헌조사를 통하여 관련 국제표준과 사고사례 및 위험분석보고서를 연구하고, 국내 중부권 공정안전관리제도 대상 사업장의 디젤엔진의 불꽃방지기 등 안전장치 적용실태를 조사하였다. 실제적으로 본 연구결과를 석유화학 산업에 적용함에 있어, 디젤엔진과 같은 내연기관 점화원의 위험인식을 통해 잠재적 폭발위험장소에서의 폭발방지에 대한 안전관리방안으로 활용 될 수 있을 것이다.

환기 및 희석을 적용한 폭발위험장소 검토에 관한 연구 (A Study on the Examination of Explosion Hazardous Area Applying Ventilation and Dilution)

  • 김남석;임재근;우인성
    • 한국가스학회지
    • /
    • 제22권4호
    • /
    • pp.27-31
    • /
    • 2018
  • 폭발위험장소의 구분은 인화성 물질을 취급하는 사업장에서 비용 및 안전 측면에서 매우 중요하다. 위험장소의 반경에 따라 전기기계 기구의 방폭기기 설치 여부가 결정되기 때문이다. 2017년 11월 6일부터 KS C IEC-60079-10-1:2015가 발행되어 새로운 기준으로 적용된다. 기존의 기준과 새로운 기준에 대한 차이를 이해하여 적용하는 것이 중요한 시점이다. 누출량 계산식에 누출계수 및 압축인자가 추가되었고 증발 풀 누출량 계산식, 누출공 크기 적용, 폭발위험장소의 모양이 추가 적용되었다. 안전계수 K값의 범위도 변경되었다. 또한 위험장소의 반경에는 기존기준은 가상체적에 환기횟수를 적용하였지만 개정기준은 누출 특성 값을 이용하여 산정된다. 본 연구에서는 환기 및 희석의 관점에서 기존 기준과의 차이점을 살펴보고 위험장소의 반경에 미치는 영향을 검토하였다. 기존 폭발위험장소를 선정한 기준과 개정기준을 기준으로 적용하여 비교 및 분석을 실시하였다. 연구결과 환기 및 희석이 잘 된다하더라도 실질적으로 위험반경에 영향이 없을 경우가 발생함을 알 수 있었다.

KGS GC101을 통한 가스시설 폭발위험장소의 설정 (Area Classification of Hazardous Gas Facility According to KGS GC101 Code)

  • 김정환;이민경;길성희;김영규;고영규
    • 한국가스학회지
    • /
    • 제23권4호
    • /
    • pp.46-64
    • /
    • 2019
  • 폭발위험장소의 선정과 거리계산에 대한 상세기술기준 KGS GC101 2018(가스시설의 폭발위험장소 종류 구분 및 범위 산정에 관한 기준)이 제정되어, 2018년 7월 12일부터 시행되었다. IEC60079-10-1 2015 (Explosive atmospheres Part 10-1: Classification of areas - Explosive gas atmospheres)에 대한 전수 내용을 정리하고, 모호한 기준의 해석이나 기준에 대한 가이드라인을 추가하여 제정하였다. KGS GC101은 폭발위험장소 종류의 구분을 위한 방법으로 (1)누출등급의 결정 (2)누출 홀 크기의 결정 (3)누출유량의 결정 (4)희석등급의 결정 (5)환기유효성의 결정을 통하여 최종적으로 (6)위험장소의 결정 (7) 폭발위험장소 범위의 산정을 할 수 있다. 이 과정을 쉽게 계산하기 위하여 Visual Basic for Application (Excel) 언어로 구성한 프로그램(KGS-HAC, C-2018-020632)을 한국가스안전공사에서 제작하였고, 현재 시범 사용 중(2019년 4월 1일 현재 v1.14)에 있다. 그럼에도 불구하고 현장에서 어려워하여, 본 논문을 통하여 코드 및 프로그램의 사용법을 설명하는 것으로 해결코자 한다.

물질특성 및 운전조건을 고려한 증기상 물질의 2차 누출에 따른 폭발위험장소 범위 선정에 관한 연구 (A Study on Determination of Range of Hazardous Area Caused by the Secondary Grade of Release of Vapor Substances Considering Material Characteristic and Operating Condition)

  • 서민수;김기석;황용우;천영우
    • 한국가스학회지
    • /
    • 제22권4호
    • /
    • pp.13-26
    • /
    • 2018
  • 현재 KS Code 등 국내규정에서는 폭발위험장소의 범위를 계산하는 방법이 명확하게 나타나지 않아, 정확한 범위 선정을 위해서는 확산 모델링 해석을 이용하여야 한다. 본 연구애서는 대표적인 물질과 운전조건을 활용하여 확산 모델링에 비하여 간편하면서도 비교적 합리적인 폭발위험장소의 범위를 산정하는 방법을 제시하고자 하였다. 현재 시행되고 있는 국내외 표준을 바탕으로 폭발하한계(LFL, Lower Flammable Limit)까지 거리에 영향을 미치는 변수를 선정하였다. 총 16종의 인화성물질을 대상으로 물질변수, 운전변수, 기상조건에 대하여 모델링을 진행하였으며, 통계분석을 통해 영향을 미치는 변수를 선별하였다. 선별된 변수를 이용하여 폭발위험장소의 범위 선정을 위한 3단계 분류화 방법(3Step Classification Method)을 작성하였다.

수전해설비의 전기방폭 기준 만족을 위한 비방폭화 방안에 관한 연구 (A Study on the Non-Hazardous Method for complying with the Explosion Proof Criteria of the Electrolysis)

  • 김용규;한신탁;박종범;공병찬;박계준;정승호
    • 한국가스학회지
    • /
    • 제26권6호
    • /
    • pp.65-75
    • /
    • 2022
  • 최근 수전해설비의 운전압력이 증가함에 따라 수소 누출로 인한 화재 및 폭발 가능성 및 위험성 또한 증가하고 있다. 따라서 관계법령 및 기술기준에 따라 수전해 시스템에 설치되는 모든 전기기에 전기방폭 형식인증 제품을 사용하거나 적절한 방법에 따른 비폭발위험장소화 절차를 적용해야 한다. 본 연구에서는 수전해설비의 일반적인 운전조건을 고려하여 KS C IEC 60079-10-1 및 KGS GC101에 따른 폭발위험장소 구분 및 범위 산정을 수행하였다. 또한, 비폭발위험장소화를 달성하기 위해 임계농도인 폭발하한 25 % 미만의 농도를 유지하기 위한 적정 환기량을 검토하였다. 그 결과 자연환기만 적용할 경우에는 수전해설비가 폭발위험장소로 구분되고, 이를 강제환기를 통해 비폭발위험장소로 구분하기 위해서는 막대한 환기량이 필요함을 확인할 수 있었다.

전산유체역학시뮬레이션을 이용한 도시가스 설비의 폭발위험성 예측 (Prediction of Explosion Risk for Natural Gas Facilities using Computational Fluid Dynamics (CFD))

  • 한상일;이동욱;황규석
    • 한국응용과학기술학회지
    • /
    • 제35권3호
    • /
    • pp.606-611
    • /
    • 2018
  • 산업현장과 열병합발전 등 다양한 장소에 사용되는 도시가스는 산업안전보건법 정의에 따라 인화성 가스에 해당되며 한국산업표준 KS C IEC에 의해 가스 폭발위험장소가 설정되어 안전하게 관리가 되어야 한다. 본 연구에서는 일반 화학공장에 적용되는 KS C IEC 표준을 저압 도시가스 사용설비 폭발위험성 예측에 합리적으로 적용하기 위해누출공 크기, 환기 등급, 환기 유효성 등의 주요 변수를 도입하였다.CFD 시뮬레이션 적용의 타당성을 평가하기 위해 전산유체역학 (CFD) 시뮬레이션, 가스누출실험, KS C IEC 표준 계산 통해 얻어진 폭발하한계가상 체적을 이용하여 네 가지 다른 조건에서 폭발 위험성을 평가하였다.

설탕 분진 폭발 사례에 관한 연구 (A Case Study on the Dust Explosion of Sugar)

  • 조영진;남정우;배승철;사승훈;최창호;서영일;송재용;김진표
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2012년도 춘계학술발표회 초록집
    • /
    • pp.404-407
    • /
    • 2012
  • 국내의 설탕 제조공장에서 발생한 설탕 분진 폭발사고와 관련하여 조사내용을 토대로 분진폭발 원인을 분석하였다. 폭발이 발생한 장소는 제조된 설탕을 저장하는 사이로(Silo) 등이 포함되는 공간으로 설탕 분진이 항상 존재하는 곳이며, 작은 불씨만 있어도 쉽게 폭발로 이어질 수 있는 위험한 장소임을 공장 관계자들은 숙지하고 있었다. 폭발직전 용접작업이 있었음을 현장조사에서 확인할 수 있었으며, 설탕 분진이 폭발할 수 있다는 위험성에 대하여 전혀 알지 못하는 임시 직원이 작업과정에서 용접을 한 것으로 확인되었다. 분진 폭발의 위험성이 존재하는 환경에서 불꽃을 취급한 작업 자체도 부적절했지만, 안전관리 측면에서 설탕 분진의 위험성에 대하여 무지한 임시 직원이 혼자 작업할 수 있도록 용인한 점과 사전에 안전교육이 전혀 없었다는 점이 더욱 문제라고 할 수 있다.

  • PDF

수소 취급설비의 폭발위험장소에 관한 연구 (A Study on Explosive Hazardous Areas in Hydrogen Handling Facility)

  • 표돈영;임옥택
    • 한국수소및신에너지학회논문집
    • /
    • 제30권1호
    • /
    • pp.29-34
    • /
    • 2019
  • Safety of hydrogen handling facilities is needed as supply of hydrogen cars has been expanded recently. In this study, the adequacy of safety regulations of hydrogen handling facilities and the risk of damage with hydrogen leakage were studied. The range of explosion hazard location of the hydrogen filling plant was investigated using the computational fluid dynamics (CFD) method, Explosive hazardous area is influenced by leakage type, hole size and sectional area. When the conditions of KS standard are applied, range explosive hazardous area is expanded 7.05 m, maximum. It is about 7 times larger than exceptional standard of hydrogen station. Meanwhile, distance from leakage point to 25% LEL of hydrogen is investigated 1.6 m. Considering the shape of charging hose, regulation of hydrogen station is appropriate.