• Title/Summary/Keyword: 폭발에너지

Search Result 362, Processing Time 0.028 seconds

Probable Volcanic Flood of the Cheonji Caldera Lake Triggered by Volcanic Eruption of Mt. Baekdusan (백두산 화산분화로 인해 천지에서 발생 가능한 화산홍수)

  • Lee, Khil-Ha;Kim, Sung-Wook;Yoo, Soon-Young;Kim, Sang-Hyun
    • Journal of the Korean earth science society
    • /
    • v.34 no.6
    • /
    • pp.492-506
    • /
    • 2013
  • The historical accounts and materials about the eruption of Mt. Baekdusan as observed by the geological survey is now showing some signs of waking from a long slumber. As a response of the volcanic eruption of Mt. Baekdusan, water release may occur from the stored water in Lake Cheonjii caldera. The volcanic flood is crucial in that it has huge potential energy that can destruct all kinds of man-made structures and that its velocity can reach up to 100 km $hr^{-1}$ to cover hundreds of kilometers of downstream of Lake Cheonji. The ultimate goal of the study is to estimate the level of damage caused by the volcanic flood of Lake Cheon-Ji caldera. As a preliminary study a scenario-based numerical analysis is performed to build hydrographs as a function of time. The analysis is performed for each scenario (breach, magma uplift, combination of uplift and breach, formation of precipitation etc.) and the parameters to require a model structure is chosen on the basis of the historic records of other volcanos. This study only considers the amount of water at the rim site as a function of time for the estimation whereas the downstream routing process is not considered in this study.

Study on Torrefaction Characteristics of Solid Biomass Fuel and Its Combustion Behavior (바이오매스 고형연료의 반탄화 특성 및 반탄화물의 연소특성에 관한 연구)

  • Lee, Weon Joon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.4
    • /
    • pp.86-94
    • /
    • 2015
  • Torrefaction is a thermochemical process proceeded at the temperature around $250^{\circ}C$ in an inert gas condition. By torrefaction, the hemicellulose portions contained in biomass are broken down to change into the volatile gas which is removed from biomass eventually. The main purpose of biomass torrefaction is to improve the energy density of the biomass to minimize the transport energy consumption, though the flammability can be elevated for transportation. In this study two types of solid biomass fuel, waste wood and rice straw, were torrefied at various temperature range from $200^{\circ}C$ to $300^{\circ}C$ to evaluate the torrefied biomass characteristics. In addition torrefied biomass were tested to evaluate the combustion characteristics using TGA (Thermogravimetric Analysis). After the torrefaction of biomass, the C/H (carbon to hydrogen ratio) and C/O (carbon to oxygen ratio) were measured for aquisition of bio-stability as well as combustion pattern. Generally C/H ratio implies the soot formation during combustion, and the C/O ratio for bio-stability. By torrefaction temperature at $300^{\circ}C$, C/H ratio and C/O ratio were increased by two times for C/H and three times for C/O. The torrefied biomass showed similar TGA pattern to coal compared to pure biomass; that is, less mass decrease at lower temperature range for torrefied biomass than the pure biomass.

Impact Resistance Evaluation of RC Beams Strengthened with Carbon FRP Sheet and Steel Fiber (CFRP 시트 및 강섬유로 보강된 RC 보의 충격저항 성능 평가)

  • Cho, Seong-Hun;Min, Kyung-Hwan;Kim, Yun-Ji;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.719-725
    • /
    • 2010
  • The analysis and experimental program of reinforced concrete (RC) structures for resistance against such extreme loads as earthquake, blast, and impact have been carried by many researchers and designers. Under the extreme loads, a large amount of energy is suddenly exerted to the structure, hence if the structure fails to absorb the impact energy, catastrophic collapse may occur. To prevent catastrophic collapse of structures, reinforced concrete must have adeguate toughness or it needs to be strengthened. The FRP strengthening method and SFRC are studied widely in resistance of impact load because of their high energy absorption capacity. In this study, drop weight impact tests were implemented to evaluate the impact resistance of SFRC and FRP strengthened RC beam while the total steel fiber volume fractions was fixed at 0.75% carbon FRP flexural strengthened RC beams. Futhermore, to prevent the shear-plug cracks when the impact load strikes the beams, additional FRP shear strengthening method are applied. The experimental, results showed that the FRP strengthened RC SFRC beams has high resistance of shear-plug cracks and crack width and SFRC has high resistance of concrete spalling failure compared to normal RC beams. The FRP flexural and shear strengthening RC beams has weakness in the spalling failure because the impact load concentrated the concrete face which is not strengthened with FRP sheets.

Effect the I-T curve and electrical characteristic of fuse elements by plated tin thickness (주석 도금 두께에 따른 퓨즈 가용체의 I-T 커브 및 전기적 특성의 영향)

  • Jin, Sang-Jun;Kim, Eun-Min;Youn, Jae-Seo;Lee, Ye-Ji;Noh, Seong-Yeo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.80-87
    • /
    • 2018
  • In recent years, due to the spread of various renewable energy power sources and the pursuit of high efficiency and low-power consumption, not only trends in the electric power industry but also the consumption, control methods, and characteristics are diversified. However, in this diversified electric power industry, the fuse (which is the core part responsible for safety) has not developed significantly in classical operation mode, and thus, fires continue to occur. In this paper, the effects of low melting-point metal plating and high melting-point metal plating on operating characteristics and IT curve movement of the fuse are investigated in a cartridge fuse, which is a classic fuse manufacturing method. The effects of plating on the thickness of the fuse are investigated, and various operating characteristics of the fuse are implemented. In addition, it is suggested that the plating of the low melting-point metal moves the rated current line of the fuse to a low rating, and moves operating characteristics to characteristics of delay operation. It is possible to design various operating characteristics using this characteristic.

Evaluation of Dynamic Tensile Strength of HPFRCC According to Compressive Strength Level (압축강도 수준에 따른 HPFRCC의 동적충격 인장강도 평가)

  • Park, Gi-Joon;Kim, Won-Woo;Park, Jung-Jun;Moon, Jae-Heum;Kim, Sung-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.31-37
    • /
    • 2018
  • This study evaluates the dynamic tensile behavior of HPFRCC according to compressive strength levels of 100, 140 and 180 MPa. Firstly, the compressive stress-strain relationship of 100, 140 and 180 MPa class HPFRCC was analyzed. As a result, the compressive strengths were 112, 150 and 202 MPa, respectively, and the elastic modulus increased with increasing compressive strength. The static tensile strengths of HPFRCC of 100, 140 and 180 MPa were 10.7, 11.5 and 16.5 MPa, and tensile strength also increased with increasing compressive strength. On the other hand, static tensile strength and energy absorption capacity at 100 and 140 MPa class HPFRCC showed no significant difference according to the compressive strength level. It was influenced by the specification of specimen and the arrangement of steel fiber. As a result of evaluating the dynamic impact tensile strength of HPFRCC, tensile strength and dynamic impact factor of all HPFRCCs tended to increase with increasing strain rate from 10-1/s to 150/s. In the same strain rate range, the DIF of the tensile strength was measured higher as the compressive strength of HPFRCC was lower. It is considered that HPFRCC of 100 MPa is the best in terms of efficiency. Therefore, it is advantageous to use HPFRCC with high compressive strength when a high level of tensile performance is required, and it is preferable to use HPFRCC close to the target compressive strength for more efficient approach at a high strain rate such as explosion.

Development of a Raman Lidar System for Remote Monitoring of Hydrogen Gas (수소 가스 원격 모니터링을 위한 라만 라이다 시스템 개발)

  • Choi, In Young;Baik, Sung Hoon;Park, Nak Gyu;Kang, Hee Young;Kim, Jin Ho;Lee, Na Jong
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.4
    • /
    • pp.166-171
    • /
    • 2017
  • Hydrogen gas is a green energy sources because it features no emission of pollutants during combustion. But hydrogen gas is very dangerous, being flammable and very explosive. Hydrogen gas detection is very important for the safety of a nuclear power plant. Hydrogen gas is generated by oxidation of nuclear fuel cladding during a critical accident, and leads to serious secondary damage in the containment building. This paper discusses the development of a Raman lidar system for remote detection and measurement of hydrogen gas. A small, portable Raman lidar system was designed, and a measurement algorithm was developed to quantitatively measure hydrogen gas concentration. To verify the capability of measuring hydrogen gas with the developed Raman lidar system, experiments were carried out under daytime outdoor conditions by using a gas chamber that can adjust the hydrogen gas density. As results, our Raman lidar system is able to measure a minimum density of 0.67 vol. % hydrogen gas at a distance of 20 m.

Analysis of Causes of and Solutions to the Stack Effect by Vertical Zoning of High-rise Buildings (초고층 건축물 수직조닝별 연돌효과의 원인 및 해결 방안 분석)

  • Shin, Sang Wook;Ryu, Jong Woo;Jeong, Hee Woong;Kim, Dae Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.5
    • /
    • pp.483-493
    • /
    • 2021
  • Urban overcrowding has created an explosive supply and demand for high-rise buildings. High-rise buildings are contributing to enhancing the image of the city by serving as focal points, but due to the stack effect, malfunction of elevator doors, difficulties in opening and closing the doors and windows of the outer wall, smoke and odors spreading to the upper floors, noise, energy loss, fire and pollutants have been causing various unexpected problems such as rapid spread of fire. This study classified high-rise buildings according to their vertical zoning, analyzed the causes of and solutions to the stack effect, and derived design and construction methods. Through the initial plan to block the outside air and securing airtightness through precise construction, we sought ways to secure the airtightness inside and outside the building by actively blocking the airflow from the lower floors. In addition, the facility solution can be a measure to reduce the specific phenomena caused by the stack effect, but it should only be applied to the minimum extent because the potential for secondary damage is high. This study emphasized the need for systematic stack effect management by suggesting design and construction measures for each vertical zoning of the causes and countermeasures of the stack effect. It is expected that this study will be helpful not only for design and construction, but also for building maintenance.

Risk analysis of flammable range according to hydrogen vehicle leakage scenario in road tunnel (도로터널 내 수소차 누출시나리오에 따른 가연영역에 대한 위험성분석 연구)

  • Lee, Hu-Yeong;Ryu, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.4
    • /
    • pp.305-316
    • /
    • 2022
  • Hydrogen energy is emerging as an alternative to the depletion of fossil fuels and environmental problems, and the use of hydrogen vehicles is increasing in the automobile industry as well. However, since hydrogen has a wide flammability limit of 4 to 75%, there is a high concern about safety in case of a hydrogen car accident. In particular, in semi-enclosed spaces such as tunnels and underground parking lots, a fire or explosion accompanied by hydrogen leakage is highly likely to cause a major accident. Therefore, it is necessary to review hydrogen safety through analysis of flammability areas caused by hydrogen leakage. Therefore, in this study, the effect of the air velocity in the tunnel on the flammability area was investigated by analyzing the hydrogen concentration according to the hydrogen leakage conditions of hydrogen vehicles and the air velocity in the tunnel in a road tunnel with standard section. Hydrogen leakage conditions were set as one tank leaking and three tanks leaking through the TPRD at the same time and a condition in which a large crack occurred and leaked. And the air velocity in the tunnel were considered 0, 1, 2.5, and 4.0 m/s. As a result of the analysis of the flammability area, it is shown that when the air velocity of 1 m/s or more exists, it is reduced by up to 25% compared to the case of air velocity of 0 m/s. But there is little effect of reducing the flammability area according to the increase of the wind speed. In particular, when a large crack occurs and completely leaks in about 2.5 seconds, the flammability area slightly increases as the air velocity increases. It was found that in the case of downward ejection, hydrogen gas remains under the vehicle for a considerably long time.

Prediction of Hydrodynamic Behavior of Unsaturated Ground Due to Hydrogen Gas Leakage in a Low-depth Underground Hydrogen Storage Facility (저심도 지중 수소저장시설에서의 수소가스 누출에 따른 불포화 지반의 수리-역학적 거동 예측 연구)

  • Go, Gyu-Hyun;Jeon, Jun-Seo;Kim, YoungSeok;Kim, Hee Won;Choi, Hyun-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.107-118
    • /
    • 2022
  • The social need for stable hydrogen storage technologies that respond to the increasing demand for hydrogen energy is increasing. Among them, underground hydrogen storage is recognized as the most economical and reasonable storage method because of its vast hydrogen storage capacity. In Korea, low-depth hydrogen storage using artificial protective structures is being considered. Further, establishing corresponding safety standards and ground stability evaluation is becoming essential. This study evaluated the hydro-mechanical behavior of the ground during a hydrogen gas leak from a low-depth underground hydrogen storage facility through the HM coupled analysis model. The predictive reliability of the simulation model was verified through benchmark experiments. A parameter study was performed using a metamodel to analyze the sensitivity of factors affecting the surface uplift caused by the upward infiltration of high-pressure hydrogen gas. Accordingly, it was confirmed that the elastic modulus of the ground was the largest. The simulation results are considered to be valuable primary data for evaluating the complex analysis of hydrogen gas explosions as well as hydrogen gas leaks in the future.

Crash Safety Evaluation of LNG Fuel Containers for Vehicles using ANSYS Explicit Dynamics (ANSYS Explicit Dynamics 해석을 활용한 차량용 LNG 용기의 충돌안전성 평가)

  • Nam, SuHyun;Kim, JiYu;Kim, EuiSoo
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.4
    • /
    • pp.58-63
    • /
    • 2022
  • With the emergence of environmental problems caused by fine dust worldwide, LNG, which is cheaper and less pollution than diesel, is attracting attention as the next generation energy of automobiles and is expanding its supply. However, it is difficult to operate smoothly due to the lack of infrastructure for LNG charging stations in Korea and the limited size of containers that can be installed according to regulations. In Korea, research and development on the contents of containers for the smooth operation of natural gas vehicles are underway, but there is a problem that the container directly receives the impact of the vehicle collision and explodes, causing a major disaster. Therefore, in this study, the safety of the container was verified by deriving the strain and stress values through ANSYS Explicit Dynamics analysis. As a result, a maximum stress of 565.37MPa occurred in the container, and it is expected that plastic deformation will occur as it exceeds the yield stress of STS304 used as a material for the container, which is beyond 505MPa. When an impact caused by a collision between a vehicle and a container is applied, it is considered necessary to design a support or reinforcement because the container may be damaged or defective.