• Title/Summary/Keyword: 포화-불포화 흐름

Search Result 31, Processing Time 0.026 seconds

Developing a SWMM-HYDRUS model for Enhanced simulation of Low Impact Developments (저영향 개발 모의 향상을 위한 SWMM-HYDRUS 결합 모델 개발)

  • Baek, Sangsoo;Cho, Kyunghwa;Pachepsky, Yakov
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.67-67
    • /
    • 2017
  • 급속한 산업화와 도시화로 인하여, 투수지역은 감소함으로써, 개발전과 다른 지표, 지표하 유출이 나타난다. 이에 대한 대안으로 최근 저영향개발 (LID)이 수문학적 및 환경, 생태적 개선으로 대안으로 대두 되고 있다. 이에 많은 연구자들이 EPA SWMM 모델의 이용하여 LID 설치 전, LID를 모의하였으나, 불포화토양 및 토양 내의 matric head에 대한 고려가 없어 정확한 LID 모의가 힘든 실정이다. 이에 본 연구에서 상세한 토양 모의가 가능 HYDRUS를 이용하여, SWMM-HYDRUS 모델을 개발하였다. EPA SWMM 모델의 경우, 가장 상단의 layer에서 green ampt equation을 이용하여 침투량을 계산 후, 다음 layer에서 Darcy eqation을 이용하여 토양 물이동을 계산되어진다. 하지만 기존의 SWMM모델의 경우, 불포화토양내의 물 흐름에 대한 고려와 Matric head와 Pond depth에 대한 고려가 없어, LID 모의 시 한계점이 나타났다. 이에 본 연구에서는 이러한 한계점을 개선하기 위하여, 기존의 EPA SWMM의 LID 모듈을 Van Genuchten's equaton과 Richard Equation을 이용하여 정확한 토양 물 흐름을 계산하는 HYDRUS을 SWMM 모델에 결합하여, 더욱 정확한 LID 모의를 실시하였다. 개선된 SWMM-HYDRUS 모델의 모의 결과, 기존의 SWMM에서 한계점을 보여주는 Metric head를 고려하여 불포화 침투가 이루어지며, 또한 포화 후 LID 위에 존재하는 Pond depth를 고려해주는 결과가 나타났다. 향후 개발된 SWMM-HYDRUS모델를 이용하여 LID를 검증 시 기존의 모델보다 정확한 모의가 가능하다.

  • PDF

Evaluation of Fly Ash as an Alternative to Clay Liner Material in Landfills (플라이애쉬의 차수 및 오염물 차단 능력 평가 연구)

  • Jeong, Mun-Gyeong;Hyeon, Jae-Hyeok;Kim, Seung-Hyeon
    • Geotechnical Engineering
    • /
    • v.14 no.5
    • /
    • pp.191-204
    • /
    • 1998
  • The feasibility of fly ash was evaluated as an alternative liner material to the conventional clay liner of landfills through modeling and laboratory experiments. In order to consider the effect of unsaturation on water flow through the liner, analyses were made to compare flow characteristics in saturated liner with that of unsaturated one. Contaminant migration characteristics in liners were investigated by batch experiment and modeling, in which phenol was employed as a model was solved by numerical techniques of finite difference method and predictor-corrector method to deal with high non-linearity. Sequential method was used to handle the system of differential equations. Results show that the alternative liner material is more capable of cutting off water flow in unsaturated condition and in preventing phenol from passing through it. It can be seen that, under the flow conditions considered in this study, the conventional saturation approach underestimates the amount of water passing through the liner and doers the cut-off capability against phenol significantly.

  • PDF

The Method for Evaluating Unsaturated Hydraulic Conductivity of the Bentonite-buffer Using Relative Humidity (상대습도를 이용한 벤토나이트 완충재의 불포화 수리전도도 평가방안)

  • Lee, Hang-Bok;Kim, Jin-Seop;Choi, Young-Chul;Choi, Heui-Joo;Kim, Kyungsu
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.1
    • /
    • pp.69-77
    • /
    • 2014
  • Unsaturated hydraulic conductivity of the bentonite-buffer was evaluated using the relative humidity data. The method for calculating unsaturated hydraulic conductivity was deduced from the general analytical equation representing the movement of water in unsaturated media, which was applied to the experimental results of water infiltration tests for identifying the behavior of unsaturated hydraulic conductivity according to the water saturation. Unlike the saturated condition, the hydraulic gradient and water flux were irregularly changed, and the unsaturated hydraulic conductivity was increased with increasing the experimental time. Swelling of bentonite grains due to the water absorption increased the volume and size of pore within bentonite, resulting in the increase of water velocity and unsaturated hydraulic conductivity. This result suggested the necessity of further investigation on the correlation between the swelling degree of bentonite-buffer and unsaturated hydraulic conductivity. The method used in this study can be useful technique for evaluating long-term hydraulic performance of bentonite-buffer in the radioactive waste disposal system.

난지도 매립지의 침출수와 가스 거동에 관한 수리 지질학적 해석

  • 김윤영;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1996.11a
    • /
    • pp.102-105
    • /
    • 1996
  • 난지도 매립지는 매립충의 불균질성과 고온의 침출수 및 가스의 흐름이 동시에 복합적으로 일어나는 현상 때문에 수리지질학적으로 매우 복잡한 지역이다. 난지도의 수문층서단위 조사와 디스크-장력 침투계(Disc tension Infiltrometer)로 불포화대 수리 특성을 추정하였으며 가스 거동 현상을 이해하기 위해 지온을 측정하였다. 매립지 주변의 지하수위 변화를 조사하기 위해 양수정과 다중-수위관측정(Multi-Level Monitoring Well)에서 수위변화를 관측하였다. 불포화대 수리특성과 기상자료를 바탕으로 매립지로의 순침투량을 추정하였다. 이것을 근거로 총 침출수 발생량을 추정하였으며, 기저 지하수면 상부에 분포하는 포화 침출수대, 즉 부유침출수의 생성 메카니즘에 대한 연구도 수행하였다.

  • PDF

Stability Analysis for a Dyke Subjected to Tidal Fluctuations (조위변동(潮位變動)을 받는 호안제(護岸堤)의 사면안정해석(斜面安定解析))

  • Kim, Sang Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.3
    • /
    • pp.91-100
    • /
    • 1988
  • Assuming that tidal level is constantly changed with an amplitude of 10 meters and a cycle of 12 hours, the slope stability for a typical dyke is analysed. The variation of pore water pressure within the dyke during the tidal change is obtained using a computer program, FLUMP, which is incorporated with saturated-unsaturated and transient flow. The results show that the variation of free water surface and distribution of pore water pressure within the dyke during the tidal fluctuations can be clearly predicted with the computer program. When a tide is lowered to the minimum level, the predicted pressure head is higher than the level of the free water surface in some parts of the dyke; that is, excess pore water pressure is generated in a zone affected by the tidal change. Also an unsaturated zone which shows negative pore water pressure is temporally created when a tide is lowered. The shear strength of the zone can be predicted based on the proposal suggested by Fredlund et al. It is emphasized that the excess pore water pressure generated during tidal fluctuations and strength parameters for the unsaturated zone should be considered in analyzing the slope stability of dykes. When those are considered, the critical slip surface seems to be located below the free water surface obtained when a tide is at the lowest.

  • PDF

Analysis of Slope Stability Considering the Saturation Depth Ratio by Rainfall Infiltration in Unsaturated Soil (불포화토 내 강우침투에 따른 포화깊이비를 고려한 사면안정해석)

  • Chae, Byung-Gon;Park, Kyu-Bo;Park, Hyuck-Jin;Choi, Jung-Hae;Kim, Man-Il
    • The Journal of Engineering Geology
    • /
    • v.22 no.3
    • /
    • pp.343-351
    • /
    • 2012
  • This study proposes a modified equation to calculate the factor of safety for an infinite slope considering the saturation depth ratio as a new variable calculated from rainfall infiltration into unsaturated soil. For the proposed equation, this study introduces the concepts of the saturation depth ratio and subsurface flow depth. Analysis of the factor of safety for an infinite slope is conducted by the sequential calculation of the effective upslope contributing area, subsurface flow depth, and the saturation depth ratio based on quasi-dynamic wetness index theory. The calculation process makes it possible to understand changes in the factor of safety and the infiltration behavior of individual rainfall events. This study analyzes stability changes in an infinite slope, considering the saturation depth ratio of soil, based on the proposed equation and the results of soil column tests performed by Park et al. (2011 a). The analysis results show that changes in the factor of safety are dependent on the saturation depth ratio, which reflects the rainfall infiltration into unsaturated weathered gneiss soil. Under continuous rainfall with intensities of 20 and 50 mm/h, the time taken for the factor of safety to decrease to less than 1.3 was 2.86-5.38 hours and 1.34-2.92 hours, respectively; in the case of repeated rainfall events, the time taken was between 3.27 and 5.61 hours. The results demonstrate that it is possible to understand changes in the factor of safety for an infinite slope dependent on the saturation depth ratio.

Wave-Induced Response of Unsaturated and Multi-layered Seabed; A Semi-analytical Method (파랑으로 인한 불포화된 다층 해저지반의 거동;준해석적 방법)

  • ;Rahman, M. S.
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.45-55
    • /
    • 1999
  • Wave-induced response, liquefaction and stability of unsaturated seabed are studied. The unsaturated seabed is modeled as a fluid-filled polo-elastic medium. The coupled process of fluid flow and the deformation of soil skeleton is formulated in the framework of Biot's theory. The resulting governing equations are solved using a semi-analytical method to evaluate the stresses and pore water pressure of unsaturated and multi-layered seabed. The semi-analytical method can be applied to calculate a pore pressure and the stresses of in anisotropic inhomogeneous seabed. The results indicate that the degree of saturation influences mostly on the magnitudes of a pore pressure and the stresses of unsaturated and multi-layed seabed. Based on the pore pressure and stresses in seabed, the analysis on the possibilities of liquefaction and shear failure was performed. The results show that the maximum depth of shear failure occurrence is deeper than the maximum liquefaction depth.

  • PDF

An Equation to Estimate Steady-State Seepage Rate of Rockfill Dam (사력댐의 정상상태 침투량 예측식)

  • Lee, Jong-Wook;Lim, Heui-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.69-80
    • /
    • 2011
  • In this study unsaturated seepage analysis of 8 large rockfill dam managed by Korea Water Resources Corporation, were carried out, and the seepage rate of rockfill dam was analyzed by changing reservoir water level, shape, saturated and unsaturated seepage properties of core zone to present an equation to estimate steady-state seepage rate of rockfill dam. This equation considers unsaturated seepage flow and is applicable to domestic large scale Rockfill dam with the height of more than 50m. Estimated values by the proposed equation are greater than those by the method of Sakamoto (1998), which does not consider unsaturated seepage flow. The difference of estimated values increases with the lower reservoir water level and decreases with the higher reservoir water level. We can be sure that the comparison between the measured seepage rate and the estimated seepage rate by the proposed equation for the existing rockill dam was well-matched. The proposed equation is close to the actual phenomenon compared with the existing equations (Sakamoto, 1998; Chapuis and Aubertin, 2001) because it is based on the results of unsaturated seepage analysis of dams, has upstream and downstream slopes in the range of 1Vertical: (0.2~0.3)Horizontal.

Construction and Interpretation of a Hydrogeologic Data Base for the Nanjido Landfill (난지도 매립지의 수리지질학적 자료를 이용한 데이터 베이스 구축 및 활용)

  • 김윤영;이강근;정상용;이철효
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.3 no.2
    • /
    • pp.80-94
    • /
    • 1996
  • The Nanjido Landfill has recently become one of the most important environmental sites for a hydrogeological study. Hydrogeological study was performed by understanding the current situation, analyzing hydrogeological information, and constructing a hydrogeological data base. The constructed data base was used for the analyses of several important phenomena in the Nanjido Landfill. Saturated hydraulic conductivity and underground temperature were measured. Based on the hydraulic conductivity and rainfall data, net infiltration rates were estimated. Leachate production rates are estimated by using the data base. The data base and a hydraulic model were used to understand the formation of the so called floating leachate layer.

  • PDF

Unsaturated Shear Strength Characteristics of Nakdong River Silty Sand (낙동강 실트질 모래의 불포화 전단강도 특성)

  • Jin, Guang-Ri;Shin, Ji-Seop;Park, Sung-Sik;Kim, Ki-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.2
    • /
    • pp.47-56
    • /
    • 2013
  • There are many technical problems, which can not be resolved by the concept of saturated soil mechanics. Unsaturated soils show an apparent cohesion due to negative pore pressure and relatively lower permeability due to entrapped air compared to saturated soils. The determination of engineering properties of soils with various moisture content is very important to evaluate shear strength and stability of natural and engineered soils. So various researches should be made on unsaturated soils. Especially, sandy soils are widely distributed near Nakdong river, one of the four rivers where Restoration Projects were carried out. Many structures such as dams, flood control facilities, detention facilities and reservoirs have been built in this area. In this study, unsaturated triaxial compressive tests were conducted on sands or silty sands at Nakdong river in order to provide their fundamental characteristics for design and construction of geotechnical structures. As a result of the tests, the maximum deviator stress increased as the confining stress and matric suction increased. The cohesion increased non-linearly as the matric suction increased, but the angle of internal friction was marginally changed.