• 제목/요약/키워드: 포화탄화수소

검색결과 48건 처리시간 0.024초

식물성 오일에서 구현되는 삼중항-삼중항 소멸법에 의한 Upconversion 분석 (Efficient Triplet-triplet Annihilation-based Upconversion in Vegetable Oils)

  • 신성주;최현석;박은경;현규;한상일;김재혁
    • 공업화학
    • /
    • 제27권6호
    • /
    • pp.639-645
    • /
    • 2016
  • 본 연구는 음용가능한 수준의 비독성, 비휘발성 식물성 오일에서 PtOEP와 DPA를 광감응제와 전자수용체로 이용해 구현되는 효율적인 TTA-UC현상에 대해 보고하고 있다. 다양한 종류의 식물성 오일에 PtOEP/DPA를 담지시켰을 때, 탈산소 공정없이도 532 nm의 입사 레이저에서 430 nm 영역의 선명한 green-to-blue UC현상이 관측되었으며, 양자수율은 약 8%로 측정되었다. 이러한 UC의 효율은 식물성 오일의 화학적 조성, 특히 불포화 탄화수소의 함량과 점도에 크게 의존하는 것으로 나타났다. 식물성 오일에서의 Stern-Volmer 상수값은 유기용매에 비해 다소 낮은 값을 보였으나, 전환효율은 93% 정도로 여전히 높은 수치를 보여주었다. 해바라기씨유에서 UC의 전환 입사광 강도($I_{th}$)는 약 $100mW/cm^2$로 태양광의 직접활용에는 아직 무리가 있으나, 산소포화조건에서 비독성 매질을 통해 즉각적으로 구현되는 UC는 비전통적인 방식의 bioimaging과 같은 기술에의 응용가능성이 높을 것으로 생각된다.

글리시돌을 원료로 한 비이온 계면활성제 합성에 관한 연구 (A Study on Synthesis of Glycidol Based Nonionic Surfactant)

  • 임종주;김병조;최규용
    • Korean Chemical Engineering Research
    • /
    • 제50권2호
    • /
    • pp.282-291
    • /
    • 2012
  • 글리시돌과 라우릭산으로부터 PGLE와 PGLE3 비이온 계면활성제를 합성하였으며, 합성한 계면활성제들의 구조를 $^1H$$^{13}C$ NMR 분석을 통하여 확인하였다. PGLE와 PGLE3 비이온 계면활성제의 CMC는 각각 $3.59{\times}10^{-2}$ mol/L, $8.80{\times}10^{-1}$ mol/L이며, CMC에서의 표면장력 값은 각각 26.09 mN/m과 28.68 mN/m이었다. 동적 표면장력 측정 결과에 의하면 PGLE와 PGLE3 비이온 계면활성제 모두, 공기와 수용액의 계면이 계면활성제 단분자에 의하여 비교적 짧은 시간 내에 포화되었으며, 1 wt% PGLE와 PGLE3 계면활성제 시스템들의 접촉각은 각각 $25.5^{\circ}$$9.5^{\circ}$ 나타내었다. 비극성 오일 n-decane과 1 wt% 계면활성제 수용액 사이의 계면장력은 시간에 따라 감소하며, PGLE와 PGLE3 시스템 모두 20분 이내에 평형에 도달하였고, 평형에서의 계면장력 값은 각각 0.42 mN/m와 0.53 mN/m를 나타내었다. PGLE 비이온 계면활성제가 PGLE3 비이온 계면활성제에 비하여 거품 안정성이 큼을 확인하였으며, 이러한 거품 안정성 측정 결과는 표면장력 측정 결과와도 일치하였다. 계면활성제, 물, 비극성 탄화수소 오일로 이루어진 3성분 시스템에 보조계면활성제를 첨가하여 $25{\sim}60^{\circ}C$의 온도에서 상평형 실험을 수행한 결과, lower phase 마이크로에멀젼 혹은 oil in water 마이크로에멀젼이 excess oil 상과 평형을 이루는 2상 영역만이 관찰되었다.

글리세롤계 계면활성제 합성 및 계면 특성에 관한 연구 (Synthesis and Characterization of Interfacial Properties of Glycerol Surfactant)

  • 임종주;이슬;김병조;이종기;최규용
    • 공업화학
    • /
    • 제22권4호
    • /
    • pp.376-383
    • /
    • 2011
  • 글리시돌과 라우릴 알코올을 반응시켜 합성한 LA와 LA3 비이온계면활성제의 CMC는 각각 $0.97{\times}10^{-3}mol/L$, $1.02{\times}10^{-3}mol/L$이며, 1 wt% 농도에서의 표면장력은 26.99 mN/m과 27.48 mN/m이었다. 동적 표면장력 측정 결과에 의하면 LA와 LA3 비이온 계면활성제 모두, 공기와 수용액의 계면이 계면활성제 단분자에 의하여 비교적 짧은 시간 내에 포화되었으며, 1 wt% LA와 LA3 계면활성제 시스템들의 접촉각은 각각 27.8, $20.9^{\circ}$를 나타내었다. 비극성 오일 n-decane과 1 wt% 계면활성제 수용액 사이의 시간에 따른 계면장력은 시간에 따라 감소하며, LA와 LA3 시스템 모두 2~3 min 이내의 짧은 시간에 평형에 도달하였고, 평형에서의 계면장력 값은 각각 0.1524, 0.1716 mN/n을 나타내었다. $25^{\circ}C$에서의 계면활성제 수용액은 두 시스템 모두 비교적 안정한 상태를 유지하였고, LA 비이온 계면활성제가 LA3 비이온 계면활성제에 비하여 거품 안정성이 큼을 확인하였으며, 이러한 거품 안정성 측정 결과는 표면장력 측정 결과와도 일치하였다. 계면활성제, 물, 비극성 탄화수소 오일로 이루어진 3성분 시스템에 대하여 $25{\sim}60^{\circ}C$의 온도에서 상평형 실험을 수행한 결과, lower phase 마이크로에멀젼 혹은 oil in water (O/W) 마이크로에멀젼이 excess oil 상과 평형을 이루는 2상 영역만이 관찰되었을 뿐, lamellar liquid crystalline phase 혹은 middle-phase 마이크로에멀젼을 포함한 3상 영역은 나타나지 않았다.

저식염 수산발효식품의 가공에 관한 연구 10. 저식염조기젓 숙성중의 휘발성성분 및 지방산조함의 변화 (Studies on the Processing of Low Salt Fermented Sea Foods 10. Changes in Volatile Compounds and Fatty Acid Composition during the Fermentation of Yellow Corvenia Prepared with Low Sodium Contents)

  • 차용준;이응호;박두천
    • 한국수산과학회지
    • /
    • 제19권6호
    • /
    • pp.529-536
    • /
    • 1986
  • 젓갈의 품질개선을 목적으로 식염의 일부를 KCl, sorbitol, lactic acid와 고춧가루알콜추출물로 대체하여 당근 저식염조기젓($Y_3,\;4\%$ 식염함량)을 재래식젓($Y_1,\;20\%$ 식염함량)과 함께 숙성중의 휘발성성분을 비교분석하였으며 또한 지방산조함의 변화도 실험하였다. 원료조기의 지질구성비율은 중성지질이 $78.1\%$, 인지질이 $21.2\%$, 당지질이 $0.7\%$이었으며 총지질의 조성은 monoene산이 $37.4\%$로 가장 많았고 다음으로 포화산이 $34.8\%$, polyene산이 $27.7\%$이었다. 숙성중에는 polyene산($C_{22:6},\;C_{22:5},\;C_{20:5}$)의 경우 조기젓 $Y_3$$Y_1$에 비해 감소폭이 적었으나 전반적으로 둘다 감소한 반면에 포화산($C_{16:0},\;C_{18:0},\;C_{14:0}$)은 계속 증가하였고 monoene산($C_{16:1}\;C_{18:1}$)은 큰 변동이 없었다. 그리고 산가와 카르보닐가등도 숙성중 계속 증가하였으며 알콜을 첨가한 조기젓 $Y_3$$Y_1$에 비해 그 함량이 낮았다. 완숙기(숙성 90일경)의 조기젓, $Y_1,\;Y_3$의 전휘발성성분중 33종의 물질을 동정하였는데 주로 탄화수소류(8종), 알콜류(7종), 산류(6종), 알데히드류(4종), 함황화합물(2종), 케톤류(2종), 페놀(1종)과 기타물질(3종)로 구성되어 있었다. 조기젓 $Y_3$에서는 그중 2-ethoxy ethanol이 전체의 $79.36\%$를, $Y_1$에서는 nonadecane이 $75.85\%$를 차지하였다. 그리고 숙성기간중 저급휘발성산(8종), 염기(5종), 가르보닐화합물(9종)을 분리동정하였는데 완숙기의 조기젓 $Y_3$에서는 acetic acid, isovaleric acid, n-caproic acid, n-butyric acid가 휘발성산의 주류이었으며, 카르보닐화합물에서는 ethanal, 2-butanone, butanal등이고 염기에서는 TMA가 대부분이었다. 그리고 재래식젓과 비교하여 볼 때 각휘발성성분조성에는 큰 차이가 없고 함량비가 달랐으며, 조기젓의 냄새성분은 어느 특정성분에 의한 것 이라기 보다 여러 성분들의 상호조화에 의하여 젓갈특유의 풍미를 나타내는 것으로 볼 수 있었다.

  • PDF

축분을 이용한 활성탄소 제조와 이의 악취 흡착성 분석 (Manufacture of Activated Carbon Using Livestock Manure and it's Odor Absorptiveness)

  • 최희철;송준익;권두중;곽정훈;양창범;유용희;박영태;박경섭;박동금;김용국
    • 한국축산시설환경학회지
    • /
    • 제13권3호
    • /
    • pp.211-218
    • /
    • 2007
  • 본 시험은 축분을 이용한 활성탄소를 제조하는 기술을 개발하고 이의 활용방안을 연구하여 축분의 처리방법을 다변화하고 제조된 활성탄소의 토양개량재, 악취흡착재 등 농업적 이용을 모색하기 위하여 악취제거시험 등을 수행하였으며 그 결과는 다음과 같다. 1. 가축분을 건조, 펠렛화 과정을 거친 후 $400^{\circ}C$에서 1시간 탄화처리하고 $750^{\circ}C$에서 1시간 활성화처리시 활성탄소가 제조되었다. 2. 축분의 회분 함량은 돈분퇴비가 11.9%로 낮았으나 계분퇴비 29.8%, 젖소깔짚 40.7%로 높았다. 휘발성물질은 젖소깔짚 11.6%, 계분퇴비 18.8%, 계분 31.0%, 돈분퇴비 22.3% 이었으나 육계깔짚은 49.8%로 높았다. 3. 축분활성탄소의 비표면적은 계분퇴비 259.8, 계분 209.8, 돈분퇴비 442.3, 젖소깔짚 $812.9\;m^2/g$으로 야자각 활성탄소 $1,040\;m^2/g$ 보다 낮았으며 미세기공의 크기는 육계깔짚 $5.02\;{\AA}$으로서 큰 반면 젖소깔짚은 $0.39\;{\AA}$으로 야자각 활성탄소와 비슷하였다. 4. 축분활성탄소의 요오드 흡착능력은 $530{\sim}580mg/g$으로 야자각 활성탄소의 1,000 mg/g 보다 낮았다. 5. 암모니아가스의 흡착율은 계분이나 계분퇴비로 만든 활성탄소가 가장 낮았으며 젖소깔짚 활성탄소가 가장 높았으며 계분퇴비 활성탄소는 20분 경에 흡착 포화에 도달하는 반면 젖소깔짚 활성탄소는 40분이 되어서 흡착 포화에 도달하였다. 6. 황화수소의 경우 휘발성물질이 비교적 많은 육계깔짚, 계분퇴비, 산란계분 등으로 만든 활성탄소에서 흡착율이 낮았으며 젖소깔짚 활성탄소에서 높았다.

  • PDF

저식염 수산발효식품의 가공에 관한 연구 7. 저식염 멸치젓 숙성중의 휘발성성분 및 지방산조성의 변화 (Studies on the Processing of Low Salt Fermented Sea Foods 7. Changes in Volatile Compounds and Fatty Acid Composition during the Fermentation of Anchovy Prepared with Low Sodium Contents)

  • 차용준;이응호;김희연
    • 한국수산과학회지
    • /
    • 제18권6호
    • /
    • pp.511-518
    • /
    • 1985
  • 냄새성분은 식품의 품질을 특정짓는 관능적요소의 하나로서, 특히 우리나라에서 즐겨 이용하는 젓갈에서는 그 기여도가 크다고 볼 수 있다. 따라서 젓갈의 품질개선을 목적으로 식염의 일부를 KCl로 대체하여 담근 저식염멸치젓 숙성중의 휘발성성분을 재래식젓($20\%$ 식염함량)과 함께 비교분석하였으며, 또한 지방산조성의 변화도 실험하였다. 원료멸치의 구성지방산은 중성지질이 $77.6\%$로 가장 많았으며 다음으로 인지질이 $22.1\%$, 당지질은 $0.35\%$였다. 그리고 총지질의 조성은 polyene산이 $39.8\%$로 가장 높았으며 polyene 산중에서도 $C_{22:6},\;C_{20:5}$가 대부분이었다. 숙성중에는 polyene 산($C_{22:6},\;C_{20:5}$)의 비율이 감소하는 반면에 포화산($C_{16:0},\;C_{18:0},\;C_{l4:0}$)의 비율이 증가하였고 monoene산중에서는 $C_{16:1}$ 및 $C_{18:1}$의 증가를 제외하고는 큰 변동이 없었다. 그리고 산가와 카르보닐가 등도 숙성중 증가하였으며 알콜을 첨가한 저식염멸치젓의 경우는 재래식 젓보다 그 함량이 낮았다. 멸치젓(숙성 90일경)의 전휘발성성분에서 38종의 성분을 동정할 수 있었는데 그 주체는 알콜류, 알데히드와 케톤류, 탄화수소류와 지방산류 등으로 구성되어 있었다. 그리고 숙성기간중 저급휘발성산(8종), 아민(5종), 카르보닐화합물(9종)을 검출동정하였는데 완숙기(숙성 60일경)의 저식염멸치젓에서는 acetic acid, isovaleric acid, propionic acid, n-butyric acid가 휘발성산의 주류이었으며, 카르보닐에서는 ethanal, 3-methyl butanal, hexanal, 2-methyl propanal 등이고 아민에서는 TMA가 대부분이었다. 그리고 재래식젓과 비교하여 볼 때 각휘발성성분조성에는 차이가 없고 함량비가 약간의 차이가 있었으며 멸치젓의 냄새성분은 어느 특정성분에 의한 것이라기 보다 여러 휘발성성분들의 상호조화에 의하여 젓갈 특유의 풍미를 나타내는 것으로 볼수 있었다.

  • PDF

생산유전의 CO2 공법 적용성 평가를 위한 평가차트 개발 및 응용 (The Development of Evaluation Chart for the Applicability of CO2 Flooding in Oil Reservoirs and Its Applications)

  • 권순일;조현진;하세훈;이원규;양성오;성원모
    • Korean Chemical Engineering Research
    • /
    • 제45권6호
    • /
    • pp.638-647
    • /
    • 2007
  • 본 연구에서는 회수증진기법 중 하나인 $CO_2$ 공법을 생산유전에 적용할 경우, 적용성 여부를 간단하고 정량적으로 평가할 수 있도록 하기 위한 평가차트를 개발하였다. 이 평가차트는 소스의 이용성, $CO_2$-오일의 혼합도, 저류층 및 오일 특성의 적정성, 주입기법의 평가항목으로 구성되어 있다. 저류층 및 오일의 특성에서 오일 비중, 오일 점성도, 오일 포화도, 저류층 온도 및 투과도의 기본평가항목에 대해서는 점수로 평가되며, $CO_2$ 순도, 저류층 두께 및 경사도 등의 추가평가항목에 대해서는 상 중 하로 구분하여 정량적으로 평가된다. 또한 미서블공법의 주입기법 평가에서는 지층경사, 수직투과성 및 저류층 두께 등에 따라 연속주입공법과 WAG($CO_2$) 공법의 여부가 정성적으로 평가된다. 이와 같이 구성된 평가차트에 대해 $CO_2$ 공법이 성공적으로 수행된 51개 유전의 적용사례를 분석하여 이를 토대로 $CO_2$ 공법이 가능한 추천점수를 설정하였다. 본 연구에서 개발한 평가차트를 국내 기업이 참여중인 스코틀랜드의 캡틴 생산유전과 베네수엘라의 오나도 생산유전에 적용하여 $CO_2$ 공법의 적용 가능성 여부를 평가하였다. 여기서 캡틴 유전은 저류층의 공극률과 투과도가 매우 양호하나, $C_{21+}$ 이상의 무거운 탄화수소 함유량이 54%를 넘는 중질유이다. 따라서 이러한 중질오일은 $CO_2$와 비미서블공법으로 진행되므로 비미서블공법 기준하의 기본평가항목에 대해서만 평가한 결과 비미서블 $CO_2$ 공법이 적정한 것으로 평가되었다. 한편, 베네수엘라의 오나도 유전에 대해서는 최소 미서블압력이 저류층 압력보다 낮게 산출되어 미서블 $CO_2$ 공법이 적용 가능할 것으로 평가되었다.

캐나다 아사바스카 오일샌드 지질특성 (Geology of Athabasca Oil Sands in Canada)

  • 권이균
    • 한국석유지질학회지
    • /
    • 제14권1호
    • /
    • pp.1-11
    • /
    • 2008
  • 오일샌드는 비재래형(unconventional) 석유자원의 하나로서 비투멘(bitumen), 물, 점토, 모래의 혼합물이다. 오일샌드 비투멘은 API 비중이 $8-14^{\circ}$이고 점도가 10,000 cP 이상인, 매우 무겁고 점성이 큰 탄화수소 자원으로서 일반적으로 지표나 천부퇴적층에서 유동성을 갖지 않는다. 오일샌드 비투멘은 주로 캐나다 앨버타주와 사스캐추완주에 분포하고 있으며, 캐나다에만 원시부존량이 1조 7천억 배럴, 확인매장량이 1천 7백억 배럴에 달한다. 대부분은 앨버타주 포트 멕머레이(Fort McMurray) 인근의 아사바스카(Athabasca), 콜드레이크(Cold Lake), 피스리버(Peace River) 지역에 매장되어 있다. 캐나다 오일샌드 저류지층은 아사바스카 지역의 멕머레이층(McMurray Fm)과 클리어워터층(Clearwater Fm), 콜드레이크 지역의 멕머레이층(McMurray Fm), 클리어워터층(Clearwater Fm), 그랜드래피드층(Grand Rapid Fm), 피스리버 지역의 블루스카이층(Bluesky Fm)과 게팅층(Gething Fm)이다. 이들 지층은 하부 백악기 지층으로서 중생대 초-중기에 발생한 북미판과 태평양판의 충돌과 그로 인한 대륙전면분지(foreland basin)의 형성과정에서 퇴적되었다. 분지의 기반암은 복잡한 지형을 갖는 고생대 탄산염암이며, 그 위에 북미대륙 북쪽의 보레알해(Boreal Sea)로부터 현재의 북미대륙 서부를 남북으로 관통하는 전기백악기내해로(Early Cretaceous Interior Seaway)를 따라 해침이 발생하면서 오일샌드 저류지층이 형성되었다. 세 개의 주요 오일샌드 분포지역 가운데 80% 이상의 오일샌드를 매장하고 있는 아사바스카 지역의 저류지층인 멕머레이층과 크리어워터층의 최하부층원인 와비스코 층원(Wabiskaw Mbr)은 전기 백악기 시기의 해침층서를 잘 반영하고 있다. 멕머레이층 하부에는 하성기원의 퇴적층이 발달하고, 상부로 가면서 점차로 조석기원의 천해 퇴적층이 우세해지며, 와비스코 층원에 와서는 의해 세립질 퇴적층이 광역적으로 분포한다. 이러한 해침기원의 상향 세립화 경향은 아사바스카 오일샌드 부존지역에서 일반적으로 관찰된다. 오일샌드 부존지층은 일반적으로 불균질 저류층이며, 주요 저류층은 하성퇴적층이나 에스츄어리(estuary) 기원의 퇴적층에 발달한 하도-포인트 바 복합체(channel-pont bar complex)이다. 이러한 하도-포인트바 복합체는 범람원 및 조수평원 세립질 퇴적층이나 만-충진(bay-fill) 퇴적층과 함께 멕머레이층을 형성한다. 멕머레이층 상부에 오는 와비스코 층원은 주로 외해 세립질 퇴적층으로 이루어져 있으나, 멕머레이층을 대규모로 침식하는 하도사암층이 지역적으로 발달하기도 한다. 캐나다에서 오일샌드는 주로 노천채굴(surface mining)과 심부열회수(in-situ thermal recovery) 방식으로 생산한다. 50 m 미만의 심도에 묻혀있는 오일샌드는 노천채굴 방식으로 회수하여 비투멘 추출(extraction)과 개질(upgrading)과정을 거쳐 합성원유(synthetic crude oil)로 생산된다. 반면에 150-450 m 심도에 묻혀있는 오일샌드는 주로 심부열회수 방식으로 비투멘을 회수하여 비교적 간단한 비투멘 블렌딩(blending)과정을 통해 유동성을 증가시켜 정유시설로 운반한다. 심부열회수 방식으로 오일샌드를 개발할 경우 주로 스팀주입중력법(SAGD: Steam Assisted Gravity Drainage)이나 주기적스팀강화법(CSS: Cyclic Steam Stimulation)이 사용된다. 이러한 방법들은 저류층에 스팀을 주입하여 저류층 내의 온도를 상승시킴으로써 비투멘의 유동성을 증가시켜 회수하는 기술을 사용한다. 따라서 오일샌드 저류층 내부의 스팀전파효율을 결정하는 저류지층의 주요 지질특성에 대한 이해가 선행되어야 효과적인 생산설계와 효율적인 생산을 수행할 수 있다. 오일샌드 생산에 영향을 미치는 저류층의 주요 지질특성에는 (1)비투멘 샌드층의 두께(pay) 및 연결성(connectivity), (2) 비투멘 함량, (3) 저류지역 지질구조, (4) 이질배플(mud baffle)이나 이질프러그(mud plug)의 분포, (5) 비투멘 샌드층에 협재하는 이질퇴적층의 두께 및 수평연장성(lateral continuity), (6) 수포화층(water-saturated sand)의 분포, (7) 가스포화층(gas-saturated sand)의 분포, (8) 포인트바의 성장방향성, (9) 속성층(diagenetic layer)의 분포, (10) 비투멘 샌드층의 조직특성 변화 등이 있다. 이러한 지질특성에 대한 고해상의 분석을 통해 보다 효과적인 오일샌드 개발이 달성될 수 있을 것이다.

  • PDF