• Title/Summary/Keyword: 포틀랜드 시멘트

Search Result 395, Processing Time 0.025 seconds

A Study on the Method for Quantifying CO2 Contents in Decarbonated Slag Materials by Differential Thermal Gravimetric Analysis (DTG 분석법을 활용한 슬래그류 비탄산염 재료의 CO2 정량 측정방법 연구)

  • Jae-Won Choi;Byoung-Know You;Yong-Sik Chu;Min-Cheol Han
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.8-16
    • /
    • 2024
  • Limestone (CaCO3, calcium carbonate), which is used as a raw material in the portland cement and steel industry, emits CO2 through decarbonation by high temperatures in the manufacturing process. To reduce CO2 emissions by the use of raw materials like limestone, it has been proposed to replace limestone with various industrial by-products that contain CaO but less or none of the carbonated minerals, that cause CO2 emissions. Loss of Ignition (LOI), Thermogravimetric analysis (TG), and Infrared Spectroscopy (IR) are used to quantitative the amount of CO2 emission by using these industrial by-products, but CO2 emissions can be either over or underestimated depending on the characteristics of by-product materials. In this study, we estimated CO2 contents by LOI, TG, IR and DTG(Differential Thermogravimetric analysis) of calcite(CaCO3) and samples that contain CO2 in the form of carbonate and whose weight increases by oxidation at high temperatures. The test results showed for CaCO3 samples, all test methods have a sufficient level of reliability. On the other hand, for the CO2 content of the sample whose weight increases at high temperature, LOI and TG did not properly estimate the CO2 content of the sample, and IR tended to overestimate compared to the predicted value, but the estimated result by DTG was close to the predicted valu e. From these resu lts, in the case of samples that contain less than a few percent of CO2 and whose weight increases during the temperature that carbonate minerals decompose, estimating the CO2 content using DTG is a more reasonable way than LOI, TG, and IR.

Strength Properties of Alkali-Activated Lightweight Composites with Alkali Activators of Different Types and Amounts (알칼리 자극제의 종류 및 첨가율에 따른 무시멘트 경량 경화체의 강도특성)

  • Lee, Sang-Soo;Kim, Yun-Mi;Park, Sun-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.4
    • /
    • pp.301-307
    • /
    • 2014
  • In order to reduce the emission of carbon dioxide($CO_2$), this research use blast furnace slag in concrete manufacture, as 100% replacement of cement. The aim of this study is to investigate the density and strength properties of alkali-activated lightweight composites with alkali activators of different types and different amounts. The bubble for achieving the lightweight of alkali-activated lightweight composites was generated in the reaction between the paper ash and the alkali activators instead of using a foaming agent. Lightweight formed concrete was conducted basic experimental for determining replacement ratio of paper ash. Then, the density and strength were measured according to the types and the contents of the alkali accelerator that can react with the paper ash. As results, the optimum replacement ratio of the paper ash was 5%. The alkali activator containing NaOH 12.5% obtained the lowest weight of $1.13g/cm^3$. Also, compressive strength were relatively high. Therefore, this study demonstrated that alkali accelerator with a certain amount of NaOH can achieve relatively high strength and lightweight alkali-activated lightweight composites.

Effect of Ground Granulated Blast-Furnace Slag on Life-Cycle Environmental Impact of Concrete (고로슬래그가 콘크리트의 전 과정 환경영향에 미치는 효과)

  • Yang, Keun-Hyeok;Seo, Eun-A;Jung, Yeon-Back;Tae, Sung-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.1
    • /
    • pp.13-21
    • /
    • 2014
  • To quantitatively evaluate the influence of ground granulated blast-furnace slag (GGBS) as a supplementary cementitious material on the life-cycle environmental impact of concrete, a comprehensive database including 3395 laboratory mixes and 1263 plant mixes was analyzed. The life-cycle assesment studied for the environmental impact of concrete can be summarized as follows: 1) the system boundary considered was from cradle to pre-construction; 2) Korea life-cycle inventories were primarily used to assess the environmental loads in each phase of materials, transportation and production of concrete; and 3) the environmental loads were quantitatively converted into environmental impact indicators through categorization, characterization, normalization and weighting process. The life-cycle environmental impacts of concrete could be classified into three categories including global warming, photochemical oxidant creation and abiotic resource depletion. Furthermore, these environmental impacts of concrete was significantly governed by the unit content of ordinary portland cement (OPC) and decreased with the increase of the replacement level of GGBS. As a result, simple equations to assess the environmental impact indicators could be formulated as a function of the unit content of binder and replacement level of GGBS.

The Prediction of tong-Term Creep Behavior of Recycled PET Polymer Concrete (단기 크리프 실험을 이용한 PET 재활용 폴리머콘크리트의 장기 크리프거동 예측)

  • Jo Byung-Wan;Tae Ghi-Ho;Kim Chul-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.521-528
    • /
    • 2004
  • In general, polymer concrete has more excellent mechanical properties and durability than Portland cement concrete, but very sensitive to heat and has large deformations. In this study, the long-term creep behaviors was predicted by the short-term creep test, and then the characteristic of creep of recycled-PET polymer concrete was defined by material and experimental variables. The error in the predicted long-term creep values is less than 5 percent for all polymer concrete systems. The filler carry out an important role to restrict the creep strains of recycled PET Polymer concrete. The creep strain and specific on using the $CaCO_3$ were less than using fly-ash. The creep increases with an increase in the applied stress, but not proportional the rate of stress increase ratio. The creep behavior of polymer concrete using recycled polyester resin is not a linear viscoelastic behavior.

A Model for Lifecycle CO2 Assessment of Building Structures Considering the Mixture Proportions of Concrete (콘크리트 배합설계를 고려한 구조물의 전과정 CO2평가 모델)

  • Yang, Keun-Hyeok;Seo, Eun-A
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.201-210
    • /
    • 2014
  • The present study proposes a phased model to assess the lifecycle $CO_2$ amount of concrete structures. The considered system boundary is from cradle to recycling, which includes constituent material, transportation, batching and mixing in ready-mixed concrete plant, use and demolition of structure, and crushing and recycling of demolished concrete. The $CO_2$ uptake of concrete by carbonation during lifetime (40 years) of a structure and the recycling life (20 years) after demolition is estimated using a simple approach generalized to predict the carbonation depth from the surfaces of concrete element and recycled aggregates. Based on the proposed phased model, a performance evaluation table is realized to straightforwardly examine the lifecycle $CO_2$ amount of concrete structures. The proposed model demonstrates that the contribution of ordinary portland cement (OPC) to lifecycle $CO_2$ emission of the concrete structure occupies approximately 85%. Furthermore, the $CO_2$ uptake is estimated to be approximately 15~18% of the lifecycle $CO_2$ emissions of concrete structures, which corresponds to be 19~22% of the emissions from OPC production. Overall, the proposed $CO_2$ performance table is expected to be practically useful as a guideline to determine the $CO_2$ emission or uptake at each phase of concrete structures.

Quality Characteristics and Environmental Impact Assessment of Alkali-Activated Foamed Concrete (알카리활성 기포콘크리트의 품질특성 및 환경영향 평가)

  • Yang, Keun-Hyeok;Yoo, Sung-Won;Lee, Hyun-Ho;Kim, Sang-Chel
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.2
    • /
    • pp.114-119
    • /
    • 2013
  • The present study tested 5 concrete mixes to develop reliable mixing proportions for the sustainable alkali-activated(AA) foamed concrete as a thermal insulation material for the floor heating system of buildings. The AA binder used was composed of 73.5% ground granulated blast-furnace slag, 15% fly ash, 5% calcium hydroxide, and 6.5% sodium silicate. As a main variable, the unit binder content varied from $325kg/m^3$ to $425kg/m^3$ at a space of $25kg/m^3$. The test results revealed that AA foamed concrete has considerable potential for practical applications when the unit binder content is close to $375kg/m^3$, which achieves the minimum quality requirements specified in KS F 4039 and ensures economic efficiency. In addition, lifecycle assessment demonstrated the reduction in the environmental impact profiles of all specimens relative to typical ordinary portland cement foamed concrete as follows: 99% for photochemical oxidation potential, 87~89% for global warming potential, 78~82% for abiotic depletion, and 70~75% for both acidification potential and human toxicity.

An Effect of $Al_{2}O_{3}$ on the Reaction between Molten Converter Slag and CaO pellet (용융전로(熔融轉爐)슬래그와 CaO펠렛의 상호반응(相互反應)에 미치는 $Al_{2}O_{3}$의 영향(影響))

  • Kim, Young-Hwan;Ko, In-Yong
    • Resources Recycling
    • /
    • v.15 no.2 s.70
    • /
    • pp.3-9
    • /
    • 2006
  • As a basic study on the conversion of molten converter slag to the ordinary portland cement, the effects of $Al_{2}O_{3}$ addition on the interface reaction between solid CaO and molten converter slag has been studied. Alumina added converter slag whose basicity was controlled to 1 and 2 was melted and hold for 30 minutes in MgO crucible at $1500^{\circ}C$. Then sintered CaO pellet heated at the same temperature was dipped into the molten slag and held for 30minutes. After the reaction, the crucible was cooled in air and the specimen was cut off to the horizontal direction of the crucible. The dissolution rate of CaO pellet with the addition of $Al_{2}O_{3}$ was measured by the change of the radius or sintered CaO pellet and the interface layer was observed by SEM/EDX. As a result. At the basicity 2 slag, thickness of created $C_{3}S$ layer increased 3.5 times and quantity of $C_{6}AF_{2}\;or\;C_{4}AF$ phase increase 2 times than baisicy 1 slag.

A Study on the Application of Very Rapid Hardening Acrylic Polymer Modified Concrete for Bonded Concrete Overlay Method (접착식 콘크리트 덧씌우기 공법을 위한 초속경 아크릴계 폴리머 개질 콘크리트의 적용성 연구)

  • Lee, Seung-Woo;Kim, Young-Kyu;Lee, Poong-Hee
    • International Journal of Highway Engineering
    • /
    • v.13 no.1
    • /
    • pp.139-148
    • /
    • 2011
  • Asphalt concrete overlay method is used by general maintenance and rehabilitation of construction for aged concrete pavement in Korea. However, in case of the AC overlay method to extend service life of the existing concrete pavements, various distresses of reflection crack, pothole and rutting are the typical problems of the asphalt overlay on existing concrete pavement since it has different physical characteristics between asphalt overlay and existing concrete pavement. To achieve this, application of concrete overlay method is required instead of AC overlay method. Concrete overlay method has advantages that can reduce maintenance cycle and costs since it has excellent bearing value for heavy vehicles and no rutting. However, technical problems of detour road construction, traffic control and other disadvantages happened by long curing time. Thus, in this study and experimental research were launched to evaluate the workability, durability and resistance against environmental loading of Very Rapid Hardening Acrylic Polymer Modified Concrete(VRH-APMC) for application of bonded concrete overlay method. Test results showed that the compressive and bond strength were exceed 21MPa and 1.4MPa of target strength after four hours for rapid traffic opening properties. And tests of resistance against environmental loading results showed that VRH-APMC secured excellent durability. Thus, it was known that VRH-APMC was suitable material for large scale bonded concrete overlay method, and it was possible to use maintenance and rehabilitation method which needs enough workability and rapid traffic opening.

Properties of Chemically Activated MSWI(Municipal Solid Waste Incinerator) Mortar (도시 폐기물 소각재를 이용한 화학적 활성화 모르타르의 특성)

  • Jo, Byung-Wan;Kim, Kwang-Il;Park, Jong-Chil;Park, Seung-Kook
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.589-594
    • /
    • 2006
  • The recycling of industrial wastes in the concrete manufacturing is of increasing interest worldwide, due to the high environmental impact of the cement and concrete industries and to the rising demand of infrastructures, both in industrialized and developing countries. The production of municipal wastes in the South Korea is estimated at about 49,902 ton per day and only 14.5% of these are incinerated and principally disposed of in landfill. These quantities will increase considerably with the growth of municipal waste production, the progressive closing of landfill, so the disposal of municipal solid waste incinerator(MSWI) ashes has become a continuous and significant issue facing society, both environmentally and economically. MSWI ash is the residue from waste combustion processes at temperature between $850^{\circ}C\;and\;1,000^{\circ}C$. And the main components of MSWI ash are $SiO_2,\;CaO\;and\;Al_2O_3$. The aim of this study is to find a way to useful application of MSWI ash(after treatment) as a structural material and to investigates the hydraulic activity, compressive strength development composition variation of such alkali-activated MSWI ashes concrete. And it was found that early cement hydration, followed by the breakdown and dissolving of the MSWI-ashes, enhanced the formation of calcium silicate hydrates(C-S-H). The XRD and SEM-EDS results indicate that, both the hydration degree and strength development are closely connected with a curing condition and a alkali-activator. Compressive strengths with values in the 40.5 MPa were obtained after curing the activated MSWI ashes with NaOH+water glass at $90^{\circ}C$.

Status of Ready-Mixed Concrete Plants and Raw Materials in Pusan (부산지역 레미콘 플랜트 및 원재료 현황)

  • Yoo, Seung-Yeup;Koo, Ja-Sul;Lee, Yang-Soo;Moon, Hyung-Jae;Kim, Jung-Jin;Park, Soon-Jeon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.641-644
    • /
    • 2008
  • This paper investigated the plant and raw material of the ready-mixed concrete company which could supply to the second Lotte World on Pusan. the results were summarized as following. Almost plants were mainly using Twin shaft mixer which was 210m$^3$/hr and horizontal type. There was different the number of admixture silos at each plants, and they were separated by types. The mixtures mainly consisted of the ordinary portland cement, fly ash and blast furnace slag. For favorable quality control, each materials had to carry from same factories, and the monitering standard for quality control should be prepared. The coarse aggregates were used with many different producing districts, so they were only used from Y caused by exclusion of quality difference. The crushed, washed and river sands were generally used as fine aggregates, so the fine aggregates which could be possible to supply stable quality were chosen. This study used Poly Carbonic Acid Admixture which was developed to satisfy maintenance of performance till 2 hours and 10MPa at 15 hours.

  • PDF