• Title/Summary/Keyword: 포트랜드-혼합 시멘트

Search Result 3, Processing Time 0.021 seconds

Portland-Blended Cement with Reduced CO2 using Trass Pozzolan (화산회 가루를 사용함에 의한 CO2-저방출 포트랜드-혼합 시멘트 제조)

  • Manaf, A.;Indrawati, V.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.490-494
    • /
    • 2011
  • This paper reports the use of supplementary cementing materials (SCMs) derived from local resources, for the partial replacement of Portland cement to reduce $CO_2$ emission during cement production. Replacement of Portland clinkers up to 20 wt.% with SCMs in normal cements reduced $CO_2$ emission by 0.18 kg $CO_2$/kg. The compressive strength exceeded the standard specification for Portland cement ASTM C-150. Blended cement samples containing 20% Portland clinker replacement had compressive strengths of 37 MPa after 28 days of curing time. The microstructure evolution of blended cement at a composition of 80:20 was similar to that of the 100% Portland cement, where the structure between days 28 and 56 reached a steady state. Blended cements with compositions of 70:30 and 60:40 still showed progress of CSH plate formation and the lack of massive structure development. It is shown that the use of supplementary cementing materials could be as one of alternative ways to reduce $CO_2$ emissions during cement production.

Granulation of Natural Zeolite Powder Using Portland Cement (포트랜드 시멘트를 이용한 천연 지올라이트 미분의 입단화)

  • Kim, Su-Jung;Zhang, Yong-Seon;Ok, Yong-Sik;Oh, Sang-Eun;Yang, Jae-E.
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.3
    • /
    • pp.259-266
    • /
    • 2007
  • Enormous amount of zeolite by-products as a fine powder have been produced while manufacturing commercial zeolite products. Granulation of the zeolite by-products is necessary in order for them to be recycled as soil conditioners or absorbent for various environmental contaminants due to the limitations inherent from their physical properties. We granulated the zeolite powders using Portland cement as a cementing agent and characterized the physical and chemical properties of the granulated zeolite product. The experimental natural zeolite had a Si/Al ratio of 4.8 and CEC of 68.1 $cmol_c\;kg^{-1}$. The X-ray diffractometry (XRD) revealed that clinoptilolite and mordenite were the major minerals of natural zeolite. Smectite, feldspar and quartz also existed as secondary minerals. Optimum conditions of granulated zeolite production occurred when natural zeolite was mixed with Portland cement at a 4:1 ratio and granulated using the extruder, left to harden for one month at $25^{\circ}C$ and treated at $400^{\circ}C$ for 3 hours. The wide spectra of XRD revealed that the granulated zeolite had amorphous oxide minerals. The alkali- or thermal-treated natural zeolite exhibited pH-dependent charge properties. The major minerals of the granulated zeolite were clinoptilolite, mordenite and tobermorite. The buffering capacity and charge density of the granulated zeolite were greater than those of natural zeolite.

Improvement of Early Strength of Blast-Furnace Slag Blended Cement at Low Temperature (고로 슬래그 시멘트의 저온 조기 강도 증진)

  • 장복기;임용무;김윤주
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.2
    • /
    • pp.130-135
    • /
    • 1999
  • The enhanced slag fineness and the batch water of low water-to-cement ratio(W/C) were employed in order to improve the early strength of blast-furnace slag blended cement at low temperature. A grinding aid was used to grind the blast-furnace slag into the fineness of 6,280$\textrm{cm}^2$/g (Blaine), and this fine slag was then homogeneously mixed with the ordinary Portland cement to produce the blast-furnace slag blended cement containing 40% slag by weight composition. On the other hand, the batch water could be reduced from W/C=0.50 (KS L 5105) to W/C=0.33 through a commercial, naphthalene type superplasticizer. Through the method mentioned above, the early strength of the blast-furnace slag blended cement at low temperature could be enhanced even somewhat higher than the Portland cement strength. And the microsturcture of the cement was studied by both the pore structure analysis and the A.C. impedance measurement.

  • PDF