• Title/Summary/Keyword: 포즈 유사도

Search Result 22, Processing Time 0.061 seconds

Key Pose-based Proposal Distribution for Upper Body Pose Tracking (상반신 포즈 추적을 위한 키포즈 기반 예측분포)

  • Oh, Chi-Min;Lee, Chil-Woo
    • The KIPS Transactions:PartB
    • /
    • v.18B no.1
    • /
    • pp.11-20
    • /
    • 2011
  • Pictorial Structures is known as an effective method that recognizes and tracks human poses. In this paper, the upper body pose is also tracked by PS and a particle filter(PF). PF is one of dynamic programming methods. But Markov chain-based dynamic motion model which is used in dynamic programming methods such as PF, couldn't predict effectively the highly articulated upper body motions. Therefore PF often fails to track upper body pose. In this paper we propose the key pose-based proposal distribution for proper particle prediction based on the similarities between key poses and an upper body silhouette. In the experimental results we confirmed our 70.51% improved performance comparing with a conventional method.

Automatic Pose similarity Computation of Motion Capture Data Through Topological Analysis (위상분석을 통한 모션캡처 데이터의 자동 포즈 비교 방법)

  • Sung, Mankyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.5
    • /
    • pp.1199-1206
    • /
    • 2015
  • This paper introduces an algorithm for computing similarity between two poses in the motion capture data with different scale of skeleton, different number of joints and different joint names. The proposed algorithm first performs the topological analysis on the skeleton hierarchy for classifying the joints into more meaningful groups. The global joints positions of each joint group then are aggregated into a point cloud. The number of joints and their positions are automatically adjusted in this process. Once we have two point clouds, the algorithm finds an optimal 2D transform matrix that transforms one point cloud to the other as closely as possible. Then, the similarity can be obtained by summing up all distance values between two points clouds after applying the 2D transform matrix. After some experiment, we found that the proposed algorithm is able to compute the similarity between two poses regardless of their scale, joint name and the number of joints.

Analysis on the reliability of PCA-based face recognition (PCA를 이용한 얼굴인식 기법의 신뢰도에 관한 분석)

  • Cho, Hyun-Jong;Kang, Min-Koo;Moon, Seung-Bin
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.101-102
    • /
    • 2008
  • 얼굴인식 분야에서 PCA(Principal Component Analysis) 기반 알고리즘은 비교적 간단한 구조와 높은 인식률로 인해 많이 사용되고 있지만 조명이나 얼굴 포즈 변화에 민감하다는 단점이 있다[1]. 이런 단점을 해결하기 위한 노력으로 PCA를 다른 얼굴인식 알고리즘과 결합함으로서 조명과 포즈 변화에 강인한 얼굴인식을 위만 연구가 현재 활발히 진행되고 있다. 본 논문은 PCA기반 얼굴인식에서 조명이 다양하게 변할 때 이에 따른 인식률의 변화와, 인식이 실패했을 경우에 인식 대상이 유사도 상위후보군에 들어가는지를 조사함으로서 PCA기반 알고리즘의 신뢰도를 확인하고자 한다. 이를 위해 Yale Face Database H와 Extended Yale Face Database B를 이용하여 실험한 결과 약 93%의 인식 성공률을 확인했으며, 7%의 인식 실패한 영상의 경우 그 인식하고자 했던 얼굴이 유사도를 기준으로 정렬된 학습 영상에서 상위 후보군에 속한다는 실험 결과를 얻음으로서 PCA기반 얼굴 인식 알고리즘의 신뢰성을 확인할 수 있었다.

  • PDF

Pose and Illumination Invariant Face Recognition Using Cylindrical Model (원통형 모델을 이용한 포즈와 조명 불변 얼굴인식)

  • Noh, Jin-Woo;Kim, Sang-Jun;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1909-1910
    • /
    • 2008
  • 본 논문에서는 실린더 모델을 이용하여 머리의 다양한 포즈 변화와 조명 변화에 대해 강인한 얼굴 인식을 제안하고자 한다. 실린더 모델은 사람의 머리가 실린더 모양과 유사하고 그 표면은 얼굴에 해당된다고 가정한다. 실린더 모델은 6가지의 모션 파라메터를 따라 움직이며 Lucas-Kanade 알고리즘에 의해 모션 파라메터의 양을 결정한다. 강인한 동작을 위해 템플릿을 지속적으로 바꿔주는 동적 템플릿(dynamic template)방법과 그에 따른 에러가 누적되는 것을 막기 위해 re-registration방법을 사용한다. 조명 문제를 해결하기 위해 템플릿에서 조명 주성분 벡터를 추출하여 제거하는 방법으로 조명 효과를 제거한다. 실험에서는 다양한 포즈 변화와 조명 변화가 반영된 얼굴 데이터베이스를 구축하고 추출한 텍스쳐 맵(texture map image)을 SVM에 적용함으로서 포즈, 조명 변화에 강인한 얼굴인식을 보인다.

  • PDF

Relationship classification model through CNN-based model learning: AI-based Self-photo Studio Pose Recommendation Frameworks (CNN 기반의 모델 학습을 통한 관계 분류 모델 : AI 기반의 셀프사진관 포즈 추천 프레임워크)

  • Kang-Min Baek;Yeon-Jee Han
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.951-952
    • /
    • 2023
  • 소위 '인생네컷'이라 불리는 셀프사진관은 MZ 세대의 새로운 놀이 문화로 떠오르며 사용자 수가 나날이 증가하고 있다. 그러나 짧은 시간 내에 다양한 포즈를 취해야 하는 셀프사진관 특성상 촬영이 낯선 사람에게는 여전히 진입장벽이 존재한다. 더불어 매번 비슷한 포즈와 사진 결과물에 기존 사용자는 점차 흥미를 잃어가는 문제점도 발생하고 있다. 이에 본 연구에서는 셀프사진관 사용자의 관계를 분류하는 모델을 개발하여 관계에 따른 적합하고 다양한 포즈를 추천하는 프레임워크를 제안한다. 사용자의 관계를 'couple', 'family', 'female_friend', 'female_solo', 'male_friend', 'male_solo' 총 6 개로 구분하였고 실제 현장과 유사하도록 단색 배경의 이미지를 우선으로 학습 데이터를 수집하여 모델의 성능을 높였다. 모델 학습 단계에서는 모델의 성능을 높이기 위해 여러 CNN 기반의 모델을 전이학습하여 각각의 정확도를 비교하였다. 결과적으로 195 장의 test_set 에서 accuracy 0.91 의 성능 평가를 얻었다. 본 연구는 객체 인식보다 객체 간의 관계를 학습시켜 관계성을 추론하고자 하는 것을 목적으로, 연구 결과가 희박한 관계 분류에 대한 주제를 직접 연구하여 추후의 방향성이나 방법론과 같은 초석을 제안할 수 있다. 또한 관계 분류 모델을 CCTV 에 활용하여 미아 방지 혹은 추적과 구조 등에 활용하여 국가 치안을 한층 높이는 데 기대할 수 있다.

Face Tracking and Recognition in Video with PCA-based Pose-Classification and (2D)2PCA recognition algorithm (비디오속의 얼굴추적 및 PCA기반 얼굴포즈분류와 (2D)2PCA를 이용한 얼굴인식)

  • Kim, Jin-Yul;Kim, Yong-Seok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.423-430
    • /
    • 2013
  • In typical face recognition systems, the frontal view of face is preferred to reduce the complexity of the recognition. Thus individuals may be required to stare into the camera, or the camera should be located so that the frontal images are acquired easily. However these constraints severely restrict the adoption of face recognition to wide applications. To alleviate this problem, in this paper, we address the problem of tracking and recognizing faces in video captured with no environmental control. The face tracker extracts a sequence of the angle/size normalized face images using IVT (Incremental Visual Tracking) algorithm that is known to be robust to changes in appearance. Since no constraints have been imposed between the face direction and the video camera, there will be various poses in face images. Thus the pose is identified using a PCA (Principal Component Analysis)-based pose classifier, and only the pose-matched face images are used to identify person against the pre-built face DB with 5-poses. For face recognition, PCA, (2D)PCA, and $(2D)^2PCA$ algorithms have been tested to compute the recognition rate and the execution time.

2D - 3D Human Face Verification System based on Multiple RGB-D Camera using Head Pose Estimation (얼굴 포즈 추정을 이용한 다중 RGB-D 카메라 기반의 2D - 3D 얼굴 인증을 위한 시스템)

  • Kim, Jung-Min;Li, Shengzhe;Kim, Hak-Il
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.4
    • /
    • pp.607-616
    • /
    • 2014
  • Face recognition is a big challenge in surveillance system since different rotation angles of the face make the difficulty to recognize the face of the same person. This paper proposes a novel method to recognize face with different head poses by using 3D information of the face. Firstly, head pose estimation (estimation of different head pose angles) is accomplished by the POSIT algorithm. Then, 3D face image data is constructed by using head pose estimation. After that, 2D image and the constructed 3D face matching is performed. Face verification is accomplished by using commercial face recognition SDK. Performance evaluation of the proposed method indicates that the error range of head pose estimation is below 10 degree and the matching rate is about 95%.

Similarity Measures between 3D Shape Models Using Silhouette Images (실루엣 영상을 이용한 3차원 형상 모델간의 유사도 측정)

  • 김정식;최수미
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.289-291
    • /
    • 2003
  • 3차원 형상 모델의 비교 연구는 의학, 분자 생물학, 컴퓨터 그래픽스 등의 분야에서 다루게 되는 기본적인 문제들 중의 하나이다. 본 논문에서는 3차원 형상 모델간의 유사성을 측정하기 위한 방법을 제안한다. 본 시스템은 삼각형 메쉬 모델을 유사성 평가에 사용한다. 유사성 비교를 위해 실루엣 영상을 이용하고, 유사 점도의 계산을 위한 측도(metric)로는 부피(Volume), 곡률(Curvature), 직선거리(Euclidean Distance)를 사용한다. 또한 다양한 방식에 의해 획득된 형상 모델의 비교를 위하여 먼저 포즈 정규화(Pose Normalization)를 한 후 유사성 평가 작업을 수행한다. 본 논문에서 제시한 3차원 형상 비교 시스템은 형상 비교대상들에 대한 전체 변형 및 부분 변형, 그리고 회전등에 강인함을 보였다.

  • PDF

Shape Comparison for Human Organ Models Using Multi-resolution Silhouette Images (다해상도 실루엣 영상을 이용한 인체 장기 모델에 대한 형상 비교)

  • 김정식;최수미
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10b
    • /
    • pp.688-690
    • /
    • 2003
  • 본 논문에서는 다해상도 2차원 실루엣 영상들을 이용하여 3차원 모델간의 형상 유사성을 비교하기 위한 방법을 제안한다. 제안 시스템은 포즈 정규화 모듈, 유사성 계산 모듈, 3차원 시각화 모듈로 구성된다. 형상 비교를 위해서 먼저, 3차원 인체 장기 모델을 입력으로 받아서 정규화를 수행하고, 다해상도 깊이맵을 획득한다. 이어서 유사성 비교를 위해 실루엣 영상을 추출한 후, 유사도 측정을 위해 시그니쳐를 측도로 사용한다. 최종적으로 계산된 결과들은 3차원 글리프 및 컬러 코딩을 이용하여 시각화된다. 본 논문에서 제시한 3차원 형상 비교 시스템은 전처리 단계에서의 정규화 수행을 통하여 스케일 및 회전 변환에 불변하는 특성을 보인다. 그리고 다양한 레벨의 깊이맵을 형상 비교에 사용하여 다해상도 기반의 유사성 평가를 지원하며, 평가 계산 속도와 정확성간의 유연성을 제공한다. 또한 3차원 히스토그램. 3차윈 글리프. 컬러 코딩 시각화 기법들과 2차원 실루엣 피킹 인터페이스를 통하여 인체 장기 모델간의 정량적 형상 차이를 사용자가 직관적으로 평가할 수 있도록 한다. 본 시스템은 차후 데이터베이스를 이용한 원격 진료 시스템에서의 질병 진단, 추적 관찰. 치료계획 등에 활용될 수 있을 것이다.

  • PDF

Face Recognition Using DCT/LDA (DCT/LDA를 이용한 얼굴 인식)

  • 이흔진;박현선;김경수;김희정;정병희;하명환;김회율
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2024-2027
    • /
    • 2003
  • 본 논문에서는 얼굴 인식 분야에서 사용되는 PCA/LDA 알고리즘을 대신하기 위해 DCT/LDA 알고리즘을 제안하였다. PCA/LDA를 이용한 얼굴 인식의 경우 PCA 를 이용하여 얼굴 영상을 적은 수의 특징 값으로 표현한 다음 LDA를 수행한다. 그러나 PCA는 트레이닝 과정의 계산량이 많고 트레이닝 셋이 변할 때마다 기저 벡터가 변화한다. PCA/LDA의 단점을 개선하기 위해 계산량이 적고 기저 벡터가 일정한 DCT의 계수를 사용한다. DCT/LDA를 사용할 경우 특징 값을 빠르게 추출하면서 PCP/LDA와 유사한 성능을 얻을 수 있다. 실험을 통하여 포즈 변화와 조명 변화가 있는 얼굴 데이터 셋에서 최고 97.8%의 인식률을 보였다.

  • PDF