Pictorial Structures is known as an effective method that recognizes and tracks human poses. In this paper, the upper body pose is also tracked by PS and a particle filter(PF). PF is one of dynamic programming methods. But Markov chain-based dynamic motion model which is used in dynamic programming methods such as PF, couldn't predict effectively the highly articulated upper body motions. Therefore PF often fails to track upper body pose. In this paper we propose the key pose-based proposal distribution for proper particle prediction based on the similarities between key poses and an upper body silhouette. In the experimental results we confirmed our 70.51% improved performance comparing with a conventional method.
Journal of the Korea Institute of Information and Communication Engineering
/
v.19
no.5
/
pp.1199-1206
/
2015
This paper introduces an algorithm for computing similarity between two poses in the motion capture data with different scale of skeleton, different number of joints and different joint names. The proposed algorithm first performs the topological analysis on the skeleton hierarchy for classifying the joints into more meaningful groups. The global joints positions of each joint group then are aggregated into a point cloud. The number of joints and their positions are automatically adjusted in this process. Once we have two point clouds, the algorithm finds an optimal 2D transform matrix that transforms one point cloud to the other as closely as possible. Then, the similarity can be obtained by summing up all distance values between two points clouds after applying the 2D transform matrix. After some experiment, we found that the proposed algorithm is able to compute the similarity between two poses regardless of their scale, joint name and the number of joints.
얼굴인식 분야에서 PCA(Principal Component Analysis) 기반 알고리즘은 비교적 간단한 구조와 높은 인식률로 인해 많이 사용되고 있지만 조명이나 얼굴 포즈 변화에 민감하다는 단점이 있다[1]. 이런 단점을 해결하기 위한 노력으로 PCA를 다른 얼굴인식 알고리즘과 결합함으로서 조명과 포즈 변화에 강인한 얼굴인식을 위만 연구가 현재 활발히 진행되고 있다. 본 논문은 PCA기반 얼굴인식에서 조명이 다양하게 변할 때 이에 따른 인식률의 변화와, 인식이 실패했을 경우에 인식 대상이 유사도 상위후보군에 들어가는지를 조사함으로서 PCA기반 알고리즘의 신뢰도를 확인하고자 한다. 이를 위해 Yale Face Database H와 Extended Yale Face Database B를 이용하여 실험한 결과 약 93%의 인식 성공률을 확인했으며, 7%의 인식 실패한 영상의 경우 그 인식하고자 했던 얼굴이 유사도를 기준으로 정렬된 학습 영상에서 상위 후보군에 속한다는 실험 결과를 얻음으로서 PCA기반 얼굴 인식 알고리즘의 신뢰성을 확인할 수 있었다.
본 논문에서는 실린더 모델을 이용하여 머리의 다양한 포즈 변화와 조명 변화에 대해 강인한 얼굴 인식을 제안하고자 한다. 실린더 모델은 사람의 머리가 실린더 모양과 유사하고 그 표면은 얼굴에 해당된다고 가정한다. 실린더 모델은 6가지의 모션 파라메터를 따라 움직이며 Lucas-Kanade 알고리즘에 의해 모션 파라메터의 양을 결정한다. 강인한 동작을 위해 템플릿을 지속적으로 바꿔주는 동적 템플릿(dynamic template)방법과 그에 따른 에러가 누적되는 것을 막기 위해 re-registration방법을 사용한다. 조명 문제를 해결하기 위해 템플릿에서 조명 주성분 벡터를 추출하여 제거하는 방법으로 조명 효과를 제거한다. 실험에서는 다양한 포즈 변화와 조명 변화가 반영된 얼굴 데이터베이스를 구축하고 추출한 텍스쳐 맵(texture map image)을 SVM에 적용함으로서 포즈, 조명 변화에 강인한 얼굴인식을 보인다.
Proceedings of the Korea Information Processing Society Conference
/
2023.11a
/
pp.951-952
/
2023
소위 '인생네컷'이라 불리는 셀프사진관은 MZ 세대의 새로운 놀이 문화로 떠오르며 사용자 수가 나날이 증가하고 있다. 그러나 짧은 시간 내에 다양한 포즈를 취해야 하는 셀프사진관 특성상 촬영이 낯선 사람에게는 여전히 진입장벽이 존재한다. 더불어 매번 비슷한 포즈와 사진 결과물에 기존 사용자는 점차 흥미를 잃어가는 문제점도 발생하고 있다. 이에 본 연구에서는 셀프사진관 사용자의 관계를 분류하는 모델을 개발하여 관계에 따른 적합하고 다양한 포즈를 추천하는 프레임워크를 제안한다. 사용자의 관계를 'couple', 'family', 'female_friend', 'female_solo', 'male_friend', 'male_solo' 총 6 개로 구분하였고 실제 현장과 유사하도록 단색 배경의 이미지를 우선으로 학습 데이터를 수집하여 모델의 성능을 높였다. 모델 학습 단계에서는 모델의 성능을 높이기 위해 여러 CNN 기반의 모델을 전이학습하여 각각의 정확도를 비교하였다. 결과적으로 195 장의 test_set 에서 accuracy 0.91 의 성능 평가를 얻었다. 본 연구는 객체 인식보다 객체 간의 관계를 학습시켜 관계성을 추론하고자 하는 것을 목적으로, 연구 결과가 희박한 관계 분류에 대한 주제를 직접 연구하여 추후의 방향성이나 방법론과 같은 초석을 제안할 수 있다. 또한 관계 분류 모델을 CCTV 에 활용하여 미아 방지 혹은 추적과 구조 등에 활용하여 국가 치안을 한층 높이는 데 기대할 수 있다.
Journal of the Korean Institute of Intelligent Systems
/
v.23
no.5
/
pp.423-430
/
2013
In typical face recognition systems, the frontal view of face is preferred to reduce the complexity of the recognition. Thus individuals may be required to stare into the camera, or the camera should be located so that the frontal images are acquired easily. However these constraints severely restrict the adoption of face recognition to wide applications. To alleviate this problem, in this paper, we address the problem of tracking and recognizing faces in video captured with no environmental control. The face tracker extracts a sequence of the angle/size normalized face images using IVT (Incremental Visual Tracking) algorithm that is known to be robust to changes in appearance. Since no constraints have been imposed between the face direction and the video camera, there will be various poses in face images. Thus the pose is identified using a PCA (Principal Component Analysis)-based pose classifier, and only the pose-matched face images are used to identify person against the pre-built face DB with 5-poses. For face recognition, PCA, (2D)PCA, and $(2D)^2PCA$ algorithms have been tested to compute the recognition rate and the execution time.
Journal of the Korea Institute of Information Security & Cryptology
/
v.24
no.4
/
pp.607-616
/
2014
Face recognition is a big challenge in surveillance system since different rotation angles of the face make the difficulty to recognize the face of the same person. This paper proposes a novel method to recognize face with different head poses by using 3D information of the face. Firstly, head pose estimation (estimation of different head pose angles) is accomplished by the POSIT algorithm. Then, 3D face image data is constructed by using head pose estimation. After that, 2D image and the constructed 3D face matching is performed. Face verification is accomplished by using commercial face recognition SDK. Performance evaluation of the proposed method indicates that the error range of head pose estimation is below 10 degree and the matching rate is about 95%.
Proceedings of the Korean Information Science Society Conference
/
2003.04c
/
pp.289-291
/
2003
3차원 형상 모델의 비교 연구는 의학, 분자 생물학, 컴퓨터 그래픽스 등의 분야에서 다루게 되는 기본적인 문제들 중의 하나이다. 본 논문에서는 3차원 형상 모델간의 유사성을 측정하기 위한 방법을 제안한다. 본 시스템은 삼각형 메쉬 모델을 유사성 평가에 사용한다. 유사성 비교를 위해 실루엣 영상을 이용하고, 유사 점도의 계산을 위한 측도(metric)로는 부피(Volume), 곡률(Curvature), 직선거리(Euclidean Distance)를 사용한다. 또한 다양한 방식에 의해 획득된 형상 모델의 비교를 위하여 먼저 포즈 정규화(Pose Normalization)를 한 후 유사성 평가 작업을 수행한다. 본 논문에서 제시한 3차원 형상 비교 시스템은 형상 비교대상들에 대한 전체 변형 및 부분 변형, 그리고 회전등에 강인함을 보였다.
Proceedings of the Korean Information Science Society Conference
/
2003.10b
/
pp.688-690
/
2003
본 논문에서는 다해상도 2차원 실루엣 영상들을 이용하여 3차원 모델간의 형상 유사성을 비교하기 위한 방법을 제안한다. 제안 시스템은 포즈 정규화 모듈, 유사성 계산 모듈, 3차원 시각화 모듈로 구성된다. 형상 비교를 위해서 먼저, 3차원 인체 장기 모델을 입력으로 받아서 정규화를 수행하고, 다해상도 깊이맵을 획득한다. 이어서 유사성 비교를 위해 실루엣 영상을 추출한 후, 유사도 측정을 위해 시그니쳐를 측도로 사용한다. 최종적으로 계산된 결과들은 3차원 글리프 및 컬러 코딩을 이용하여 시각화된다. 본 논문에서 제시한 3차원 형상 비교 시스템은 전처리 단계에서의 정규화 수행을 통하여 스케일 및 회전 변환에 불변하는 특성을 보인다. 그리고 다양한 레벨의 깊이맵을 형상 비교에 사용하여 다해상도 기반의 유사성 평가를 지원하며, 평가 계산 속도와 정확성간의 유연성을 제공한다. 또한 3차원 히스토그램. 3차윈 글리프. 컬러 코딩 시각화 기법들과 2차원 실루엣 피킹 인터페이스를 통하여 인체 장기 모델간의 정량적 형상 차이를 사용자가 직관적으로 평가할 수 있도록 한다. 본 시스템은 차후 데이터베이스를 이용한 원격 진료 시스템에서의 질병 진단, 추적 관찰. 치료계획 등에 활용될 수 있을 것이다.
본 논문에서는 얼굴 인식 분야에서 사용되는 PCA/LDA 알고리즘을 대신하기 위해 DCT/LDA 알고리즘을 제안하였다. PCA/LDA를 이용한 얼굴 인식의 경우 PCA 를 이용하여 얼굴 영상을 적은 수의 특징 값으로 표현한 다음 LDA를 수행한다. 그러나 PCA는 트레이닝 과정의 계산량이 많고 트레이닝 셋이 변할 때마다 기저 벡터가 변화한다. PCA/LDA의 단점을 개선하기 위해 계산량이 적고 기저 벡터가 일정한 DCT의 계수를 사용한다. DCT/LDA를 사용할 경우 특징 값을 빠르게 추출하면서 PCP/LDA와 유사한 성능을 얻을 수 있다. 실험을 통하여 포즈 변화와 조명 변화가 있는 얼굴 데이터 셋에서 최고 97.8%의 인식률을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.