• Title/Summary/Keyword: 포즈 예측

Search Result 17, Processing Time 0.03 seconds

Key Pose-based Proposal Distribution for Upper Body Pose Tracking (상반신 포즈 추적을 위한 키포즈 기반 예측분포)

  • Oh, Chi-Min;Lee, Chil-Woo
    • The KIPS Transactions:PartB
    • /
    • v.18B no.1
    • /
    • pp.11-20
    • /
    • 2011
  • Pictorial Structures is known as an effective method that recognizes and tracks human poses. In this paper, the upper body pose is also tracked by PS and a particle filter(PF). PF is one of dynamic programming methods. But Markov chain-based dynamic motion model which is used in dynamic programming methods such as PF, couldn't predict effectively the highly articulated upper body motions. Therefore PF often fails to track upper body pose. In this paper we propose the key pose-based proposal distribution for proper particle prediction based on the similarities between key poses and an upper body silhouette. In the experimental results we confirmed our 70.51% improved performance comparing with a conventional method.

Face Recognition Robust to Pose Variations (포즈 변화에 강인한 얼굴 인식)

  • 노진우;문인혁;고한석
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.63-69
    • /
    • 2004
  • This paper proposes a novel method for achieving pose-invariant face recognition using cylindrical model. On the assumption that a face is shaped like that of a cylinder, we estimate the object's pose and then extract the frontal face image via a pose transform with previously estimated pose angle. By employing the proposed pose transform technique we can increase the face recognition performance using the frontal face images. Through representative experiments, we achieved an increased recognition rate from 61.43% to 94.76% by the pose transform. Additionally, the recognition rate with the proposed method achieves as good as that of the more complicated 3D face model.

Pictorial Model of Upper Body based Pose Recognition and Particle Filter Tracking (그림모델과 파티클필터를 이용한 인간 정면 상반신 포즈 인식)

  • Oh, Chi-Min;Islam, Md. Zahidul;Kim, Min-Wook;Lee, Chil-Woo
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.186-192
    • /
    • 2009
  • In this paper, we represent the recognition method for human frontal upper body pose. In HCI(Human Computer Interaction) and HRI(Human Robot Interaction) when a interaction is established the human has usually frontal direction to the robot or computer and use hand gestures then we decide to focus on human frontal upper-body pose, The two main difficulties are firstly human pose is consist of many parts which cause high DOF(Degree Of Freedom) then the modeling of human pose is difficult. Secondly the matching between image features and modeling information is difficult. Then using Pictorial Model we model the human main poses which are mainly took the space of frontal upper-body poses and we recognize the main poses by making main pose database. using determined main pose we used the model parameters for particle filter which predicts the posterior distribution for pose parameters and can determine more specific pose by updating model parameters from the particle having the maximum likelihood. Therefore based on recognizing main poses and tracking the specific pose we recognize the human frontal upper body poses.

  • PDF

Error Quantification of Photogrammetric 6DOF Pose Estimation (사진계측기반 6자유도 포즈 예측의 오차 정량화)

  • Kim, Sang-Jin;You, Heung-Cheol;Reu, Taekyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.5
    • /
    • pp.350-356
    • /
    • 2013
  • Photogrammetry has been widely used for measuring the important physical quantities in aerospace areas because it is a remote and non-contact measurement method. In this study, we analyzed photogrammetric error which can be occur in six degrees of freedom(6DOF) analysis among coordinates systems with single camera. Error analysis program were developed, and validated using geometric problem converted from imaging process. We analogized that the statistic from estimated camera pose which is need to 6DOF analysis is normally distributed, and quantified the photogrammetric error using estimated population standard deviation.

A Gesture-based interface for interactive computer games (게임을 위한 제스처 기반의 인터페이스)

  • Park, Hye-Sun;Kang, Hyun;Jung, Kee-Chul;Kim, Eun-Yi;Park, Min-Ho;Kim, Hang-Joon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10b
    • /
    • pp.631-633
    • /
    • 2003
  • 본 논문에서는 사용자의 연속적인 제스처들을 실시간으로 제스처를 적출하고 인식하는 게임 인터페이스를 제안한다. 제안된 인터페이스는 동영상에서 사용자의 자세를 예측하는 포즈 추정 모듈과 연속된 포즈 심벌열로부터 제스처를 적출하고 인식하는 제스처 인식 모듈로 구성되어 있다. 사용자의 자세는 영상에 나타난 머리, 양손의 좌표를 취하여 대표되는 자세를 클러스터링을 통해 구하였다. 제스처를 적출하기 위해서 연속된 포즈 심벌열로부터 가제스처들을 생성한다. 생성된 가제스처의 인식엔진의 인식값을 기준으로하여 제스처를 판별한다. 제안된 논문에서 정의한 제스처를 인터페이스로 사용하여 실제 게임인 퀘이크II에 적용해 봄으로써, 컴퓨터 게임 안에서, 제안된 인터페이스가 타탕함을 증명하였다.

  • PDF

Pose-invariant Face Recognition using a Cylindrical Model and Stereo Camera (원통 모델과 스테레오 카메라를 이용한 포즈 변화에 강인한 얼굴인식)

  • 노진우;홍정화;고한석
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.7
    • /
    • pp.929-938
    • /
    • 2004
  • This paper proposes a pose-invariant face recognition method using cylindrical model and stereo camera. We divided this paper into two parts. One is single input image case, the other is stereo input image case. In single input image case, we normalized a face's yaw pose using cylindrical model, and in stereo input image case, we normalized a face's pitch pose using cylindrical model with previously estimated pitch pose angle by the stereo geometry. Also, since we have an advantage that we can utilize two images acquired at the same time, we can increase overall recognition performance by decision-level fusion. Through representative experiments, we achieved an increased recognition rate from 61.43% to 94.76% by the yaw pose transform, and the recognition rate with the proposed method achieves as good as that of the more complicated 3D face model. Also, by using stereo camera system we achieved an increased recognition rate 5.24% more for the case of upper face pose, and 3.34% more by decision-level fusion.

based on Bluetooth Handsfree Headset UI Design Project (<사용자 참여를 통한 미래 사용자 사용패턴 예측 방법론 제안> 블루투스 핸즈프리 헤드셋의 UI 디자인 개발 사례를 중심으로)

  • Jo, Hyun-Jae;Kim, Sun-Ah;Lee, Hyun-Ju
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02b
    • /
    • pp.524-529
    • /
    • 2006
  • 짧은 기간에 비약적으로 기술이 발전하는 시대에는 사용자의 미래환경과 그에 따른 사용자의 행태를 미리 분석할 수 있는 방법이 절실히 요구된다. 본 연구에서는 블루투스 핸즈프리 헤드셋의 UI 디자인 개발을 위해 사용된 사용자의 제품 사용행태 예측 과정을 통해 그 방법론을 제시하고자 한다. 1 차로 블루투스 핸즈프리 헤드셋 사용자가 그것을 사용하는 사용행태를 조사 분석하였으며, 조사의 결과를 인터랙티브 스토리텔링의 방법으로 구성하여 아이디어개발을 위한 보조도구로 개발하였다. 조사의 대상은 블루투스 헤드셋의 주요 사용자 층인 10 대 후반에서 20 대 중반에 속하는 사용자 그룹이며 블루투스 헤드셋으로 변용 가능한 패션 액세서리를 선정하고 선정한 액세서리를 블루투스 핸즈프리 헤드셋으로 가정하여 사용시의 그들의 사용 포즈를 분석하는 방법을 통해 주사용자 층의 사용행태를 예측하고자 하였다. 이 연구의 결과는 블루투스 헤드셋 개발팀내의 기획자, 기술자, 디자이너들이 제품의 개발 방향에 대한 아이디어 공유를 위하여 Macromedia Flash 를 사용하여 인터랙티브 스토리텔링으로 제작하여 디자인을 위한 보조 툴로 제안하였다. 본 연구는 블루투스 핸즈프리 헤드셋과 같이 사용자의 새로운 요구와 사용성이 기대되는 제품 UI 디자인을 위해서는 사용자의 미래 요구사항을 예측 할 수 있는 방법이 필요하다는 배경에서 시작되었으며, 블루투스 핸즈프리 헤드셋의 사용자의 요구 파악 및 예측을 위한 방법으로 제품과 사용자의 사용 포즈를 연계하여 분석하는 방법을 제안하였다.

  • PDF

Large Scale Entertainment System based on Gesture Recognition for Learning Chinese Character Contents (제스처 인식 대형 놀이 시스템 기반 한자 학습 콘텐츠)

  • Song, Dae-Hyeon;Park, Jae-Wan;Lee, Chil-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.9
    • /
    • pp.1-8
    • /
    • 2010
  • In this paper, we propose a large scale entertainment system based on gesture recognition for learning Chinese character contents. The system is consisted of parts that forecast user's posture in two infrared images and part that recognize gestures from continuous poses. And we can divide and acquire in front side pose and side pose about one pose in each IR camera. This entertainment system is immersive in nature and convenient for its gestures based controlling system. Also, it can maximize information transmission because induce immersion and interest using two large size displays and various multimedia elements. The learning Chinese character contents can master Chinese character naturally because give interest to user and supply game and education at the same time. Therefore, it can expect synergy effect that can learn playing to user combining with large entertainment system based on gesture recognition.

A Real-time Hand Pose Recognition Method with Hidden Finger Prediction (은닉된 손가락 예측이 가능한 실시간 손 포즈 인식 방법)

  • Na, Min-Young;Choi, Jae-In;Kim, Tae-Young
    • Journal of Korea Game Society
    • /
    • v.12 no.5
    • /
    • pp.79-88
    • /
    • 2012
  • In this paper, we present a real-time hand pose recognition method to provide an intuitive user interface through hand poses or movements without a keyboard and a mouse. For this, the areas of right and left hands are segmented from the depth camera image, and noise removal is performed. Then, the rotation angle and the centroid point of each hand area are calculated. Subsequently, a circle is expanded at regular intervals from a centroid point of the hand to detect joint points and end points of the finger by obtaining the midway points of the hand boundary crossing. Lastly, the matching between the hand information calculated previously and the hand model of previous frame is performed, and the hand model is recognized to update the hand model for the next frame. This method enables users to predict the hidden fingers through the hand model information of the previous frame using temporal coherence in consecutive frames. As a result of the experiment on various hand poses with the hidden fingers using both hands, the accuracy showed over 95% and the performance indicated over 32 fps. The proposed method can be used as a contactless input interface in presentation, advertisement, education, and game applications.

Stereo-based Robust Human Detection on Pose Variation Using Multiple Oriented 2D Elliptical Filters (방향성 2차원 타원형 필터를 이용한 스테레오 기반 포즈에 강인한 사람 검출)

  • Cho, Sang-Ho;Kim, Tae-Wan;Kim, Dae-Jin
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.10
    • /
    • pp.600-607
    • /
    • 2008
  • This paper proposes a robust human detection method irrespective of their pose variation using the multiple oriented 2D elliptical filters (MO2DEFs). The MO2DEFs can detect the humans regardless of their poses unlike existing object oriented scale adaptive filter (OOSAF). To overcome OOSAF's limitation, we introduce the MO2DEFs whose shapes look like the oriented ellipses. We perform human detection by applying four different 2D elliptical filters with specific orientations to the 2D spatial-depth histogram and then by taking the thresholds over the filtered histograms. In addition, we determine the human pose by using convolution results which are computed by using the MO2DEFs. We verify the human candidates by either detecting the face or matching head-shoulder shapes over the estimated rotation. The experimental results showed that the accuracy of pose angle estimation was about 88%, the human detection using the MO2DEFs outperformed that of using the OOSAF by $15{\sim}20%$ especially in case of the posed human.