• Title/Summary/Keyword: 포즈추론

Search Result 3, Processing Time 0.022 seconds

Relationship classification model through CNN-based model learning: AI-based Self-photo Studio Pose Recommendation Frameworks (CNN 기반의 모델 학습을 통한 관계 분류 모델 : AI 기반의 셀프사진관 포즈 추천 프레임워크)

  • Kang-Min Baek;Yeon-Jee Han
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.951-952
    • /
    • 2023
  • 소위 '인생네컷'이라 불리는 셀프사진관은 MZ 세대의 새로운 놀이 문화로 떠오르며 사용자 수가 나날이 증가하고 있다. 그러나 짧은 시간 내에 다양한 포즈를 취해야 하는 셀프사진관 특성상 촬영이 낯선 사람에게는 여전히 진입장벽이 존재한다. 더불어 매번 비슷한 포즈와 사진 결과물에 기존 사용자는 점차 흥미를 잃어가는 문제점도 발생하고 있다. 이에 본 연구에서는 셀프사진관 사용자의 관계를 분류하는 모델을 개발하여 관계에 따른 적합하고 다양한 포즈를 추천하는 프레임워크를 제안한다. 사용자의 관계를 'couple', 'family', 'female_friend', 'female_solo', 'male_friend', 'male_solo' 총 6 개로 구분하였고 실제 현장과 유사하도록 단색 배경의 이미지를 우선으로 학습 데이터를 수집하여 모델의 성능을 높였다. 모델 학습 단계에서는 모델의 성능을 높이기 위해 여러 CNN 기반의 모델을 전이학습하여 각각의 정확도를 비교하였다. 결과적으로 195 장의 test_set 에서 accuracy 0.91 의 성능 평가를 얻었다. 본 연구는 객체 인식보다 객체 간의 관계를 학습시켜 관계성을 추론하고자 하는 것을 목적으로, 연구 결과가 희박한 관계 분류에 대한 주제를 직접 연구하여 추후의 방향성이나 방법론과 같은 초석을 제안할 수 있다. 또한 관계 분류 모델을 CCTV 에 활용하여 미아 방지 혹은 추적과 구조 등에 활용하여 국가 치안을 한층 높이는 데 기대할 수 있다.

Class Classification and Validation of a Musculoskeletal Risk Factor Dataset for Manufacturing Workers (제조업 노동자 근골격계 부담요인 데이터셋 클래스 분류와 유효성 검증)

  • Young-Jin Kang;;;Jeong, Seok Chan
    • The Journal of Bigdata
    • /
    • v.8 no.1
    • /
    • pp.49-59
    • /
    • 2023
  • There are various items in the safety and health standards of the manufacturing industry, but they can be divided into work-related diseases and musculoskeletal diseases according to the standards for sickness and accident victims. Musculoskeletal diseases occur frequently in manufacturing and can lead to a decrease in labor productivity and a weakening of competitiveness in manufacturing. In this paper, to detect the musculoskeletal harmful factors of manufacturing workers, we defined the musculoskeletal load work factor analysis, harmful load working postures, and key points matching, and constructed data for Artificial Intelligence(AI) learning. To check the effectiveness of the suggested dataset, AI algorithms such as YOLO, Lite-HRNet, and EfficientNet were used to train and verify. Our experimental results the human detection accuracy is 99%, the key points matching accuracy of the detected person is @AP0.5 88%, and the accuracy of working postures evaluation by integrating the inferred matching positions is LEGS 72.2%, NECT 85.7%, TRUNK 81.9%, UPPERARM 79.8%, and LOWERARM 92.7%, and considered the necessity for research that can prevent deep learning-based musculoskeletal diseases.

AI-Based Object Recognition Research for Augmented Reality Character Implementation (증강현실 캐릭터 구현을 위한 AI기반 객체인식 연구)

  • Seok-Hwan Lee;Jung-Keum Lee;Hyun Sim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1321-1330
    • /
    • 2023
  • This study attempts to address the problem of 3D pose estimation for multiple human objects through a single image generated during the character development process that can be used in augmented reality. In the existing top-down method, all objects in the image are first detected, and then each is reconstructed independently. The problem is that inconsistent results may occur due to overlap or depth order mismatch between the reconstructed objects. The goal of this study is to solve these problems and develop a single network that provides consistent 3D reconstruction of all humans in a scene. Integrating a human body model based on the SMPL parametric system into a top-down framework became an important choice. Through this, two types of collision loss based on distance field and loss that considers depth order were introduced. The first loss prevents overlap between reconstructed people, and the second loss adjusts the depth ordering of people to render occlusion inference and annotated instance segmentation consistently. This method allows depth information to be provided to the network without explicit 3D annotation of the image. Experimental results show that this study's methodology performs better than existing methods on standard 3D pose benchmarks, and the proposed losses enable more consistent reconstruction from natural images.