• Title/Summary/Keyword: 포졸란재

Search Result 8, Processing Time 0.024 seconds

Resistance In Chloride ion Penetration and Pore Structure of Concrete Containing Pozzolanic Admixtures (포졸란재 함유 콘크리트의 세공구조와 염화물이온 침투 저항성)

  • 소양섭;소형석
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.100-109
    • /
    • 2002
  • Significant damage to concrete results from the intrusion of corrosive solutions, for example, dissolved chlorides corrode reinforcing steel and cause spatting. Effectively blocks the penetration of these solutions will eliminate or greatly reduce this damage and lead to increased durability. This study is to investigate the effects of pozzolanic admixtures, fly ash and silica fume, and a blast furnace slag on the chloride ion penetration of concretes. The main experimental variables wore the water-cementitious material ratios, the types and amount of admixtures, and the curing time. And it is tested for the porosity and pore size distributions of cement paste, chloride ion permeability based on electrical conductance, and 180-day ponding test for chloride intrusion. The results show that the resistance of concrete to the penetration of chloride ions increases as the w/c was decreased, and the increasing of curing time. Also, concrete with pozzolans exhibited higher resistance to chloride ion penetration than the plain concrete. The significant reduction in chloride ion permeability(charge passed) of concrete with pozzolans due to formation of a discontinuous macro-pore system which inhibits flow. It is shown that there is a relationship between chloride ion permeability and depth of chloride ion penetration of concrete, based on the pore structure (porosity and pore size distributions) of cement paste.

A Study on The Corrosion Resistance of Concrete Containing Copper Slag (동제련 슬래그 혼입 콘크리트의 부식 저항성에 관한 연구)

  • Lee, Dong-Un;Jung, Yoo-Jin;Kim, Young-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.189-196
    • /
    • 2007
  • The purpose of this study was to analyze steel corrosion resistance of concrete containing copper slag. The specimens were made with normal portland cement and pozzolan materials with various replacement ratio and with W/B ratio ranging from 35% to 55%. Compressive strength, coefficient of chloride diffusion, corrosion area ratio and weight reduction ratio were determinated for the test. The results show that the concrete with pozzolan materials is superior resistant to chloride ions compared to the concrete without pozzolan materials. It was observed that blast furnace slag replacement ratio of 20% gives the best results with respect to chloride ion penetration and corrosion tests and observed that copper slag replacement ratio of 10% gives the seperior resistance compared to normal concrete.

Influence of Mixtures and Curing Conditions on Strength and Microstructure of Reactive Powder Concrete Using Ternary Pozzolanic Materials (배합 및 양생조건이 3성분계 포졸란재를 이용한 RPC의 강도발현 특성에 미치는 영향)

  • Janchivdorj, Khulgadai;Choi, Seung-Hoon;So, Hyoung-Seok;Seo, Ki-Seog;So, Seung-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.4
    • /
    • pp.457-465
    • /
    • 2013
  • This study discussed the influence of mixtures and curing conditions on the development of strength and microstructure of RPC using ternary pozzolanic materials. Through pilot experiment, various RPC was manufactured by adding single or mixed ternary pozzolanic materials such as silica fume, blast furnace slag and fly ash by mass of cement, up to 0~65%, and cured by using 4 types of method which are water and air-dried curing at $20^{\circ}C$, steam and hot-water curing at $90^{\circ}C$. The results show that the use of ternary pozzolanic materials and a suitable curing method are an effective method for improving development of strength and microstructure of RPC. The unit volume of cement was greatly reduced in RPC with ternary pozzolanic materials and unlike hydration reaction in cement, the pozzolanic reaction noticeably contributes to a reduction in hydration heat and dry shrinkage. A considerable improvement was found in the flexural strength of RPC using ternary pozzolanic materials, and then the utilization of a structural member subjected to bending was expected. The X-ray diffractometer (XRD) analysis and Scanning Electronic Microscope (SEM) revealed that the microstructure of RPC was denser by using the ternary pozzolanic materials than the original RPC containing silica fume only.

The mechanical properties of Reactive Powder Concrete using Ternary Pozzolanic Materials exposed to high Temperature (3성분계 포졸란재를 이용한 반응성 분체 콘크리트(RPC)의 고온특성)

  • Janchivdorj, Khulgadai;So, Hyoung-Seok;Yi, Je-Bang;So, Seung-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.68-71
    • /
    • 2013
  • Reactive Powder Concrete (RPC) is an ultra high strength and high ductility cement-based composite material and has shown some promise as a new generation concrete in construction field. It is characterized by a silica fume-cement mixture with very low water-binder (w/b) ratio and very dense microstructure, which is formed using various powders such as cement, silica fume and very fine quartz sand (0.15~0.4mm) instead of ordinary coarse aggregate. However, the unit weight of cement in RPC is as high as 900~1,000 kg/㎥ due to the use of very fine sand instead of coarse aggregate, and a large volume of relatively expensive silica fume as a high reactivity pozzolan is also used, which is not produced in Korea and thus must be imported. Since the density of RPC has a heavy weight at 2.5~3.0 g/㎤. In this study, the modified RPC was made by the combination of ternary pozzolanic materials such as blast furnace slag and fly ash, silica fume in order to economically and practically feasible for Korea's situation. The fire resistance and structural behavior of the modified RPC exposed to high temperature were investigated.

  • PDF

A Study on the Chloride Diffusivity of Recycled Aggregate Concrete (순환골재 콘크리트의 염화물 확산성에 관한 연구)

  • Bae, Jong-Min;Kim, Young-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.1
    • /
    • pp.147-153
    • /
    • 2010
  • The recycling of demolished concrete as an alternative source of coarse aggregates for the production of new concrete can help to solve the growing waste disposal crisis and the problem of the depletion of natural aggregates. The purpose of this study is to investigate the chloride migration of recycled aggregate concrete containing pozzolanic materials by the chloride migration coefficient. The specimens were made with recycled coarse aggregate at various replacement ratios (10, 30, 50%) and metakaolin, blast furnace slag, and fly ash is replaced for recycled concrete with a mixing ratio of 20%. The major results are as follows. 1) The compressive strength of recycled aggregate concrete containing pozzolanic materials increases as the curing age and chloride diffusivity decreases. 2) When the replacement ratio of recycled coarse aggregate is 30%, the chloride migration coefficient of recycled concrete containing blast furnace slag or metakaolin that shows a value similar to or lower than that of plain concrete at all ages.

An Experimental Study on the Physical Properties of Ternary Concrete according to Replacement Ratio of Pozzolanic Admixtures (포졸란재 혼입율에 따른 3성분계 콘크리트의 물리적 특성에 관한 실험적 연구)

  • Kwon, Hae-Won;Lee, Jin-Woo;Bae, Yeoun-Ki;Lee, Jae-Sam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.773-776
    • /
    • 2006
  • This experimental study is the fundamental report to use the ternary concrete. This study performed to know physical properties of ternary concrete according to replacement ratio of pozzolanic admixtures and curing temperature conjugation. To investigate Strength development properties of according to replacement ratio of pozzolanic admixtures, both fly ash replaced on portland cement in 5, 10 and 15% weight ratios and blast furnace slag replaced on the portland cement in 5, 15, 20, 30 and 40% weigt ratios was used. Also this is studied fresh and hardened concrete properties in condition of curing temperature $10^{\circ}C\;and\;20^{\circ}C$. The followings are the summary of which concluded in this study. Considering the concrete cured over 28 days compressive strength, most replacement ratios of pozzolanic admixtures were higher than plain concrete that. Compressive strength development properties of ternary concrete according to curing temperature conjugation were similar except for early age.

  • PDF

Evaluation on Reactivity of By-Product Pozzolanic Materials Using Electrical Conductivity Measurement (전기전도도 시험방법을 활용한 산업부산물 포졸란재료의 반응성 평가)

  • Choi, Ik-Je;Kim, Ji-Hyun;Lee, Soo-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.5
    • /
    • pp.421-428
    • /
    • 2016
  • In this work, pozzolanic activities of various waste materials were compared with those of well-known by-product pozzolanic materials. Undensified and densified silica fume, ASTM class F and class C fly ash, and metakaolin were chosen as well-known pozzolanic materials, and bentonite powder, ceramic powder obtained from wash basin, and waste glass wool, which can possibly possess pozzolanic property, were chosen for comparison. Drop in electrical conductivity at $40^{\circ}C$ saturated lime solution was measured for each materials. The amount of Ca(OH)2 decomposed from cement paste at $450{\sim}500^{\circ}C$ was also measured to evaluate pozzolanic activity. The 28 day compressive strength were used to observe the mechanical property enhanced by incorporation of various waste materials. According to the experimental results, using "difference between maximum conductivity value and conductivity value at 4 hour" was found to be a reasonable approach to determine pozzolanic activity of a material. Pozzolanic activity measured using electrical conductivity correlates very well with that measured using the amount of Ca(OH)2 remained in the cement paste. Relatively good agreement was also found with electrical conductivity and 28 day compressive strength. It was found that electrical conductivity measurement can be used to evaluate pozzolanic activity of unknown materials.

A Preliminary Investigation on Pozzolanic Activity of Dredged Sea Soil (소성 준설토의 포졸란 반응성에 대한 기초 연구)

  • Kim, Ji-Hyun;Moon, Hoon;Chung, Chul-Woo;Lee, Jae-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.6
    • /
    • pp.531-536
    • /
    • 2014
  • Recently, the amounts of dredge sea soil in south Korea have been increasing because of various maintenance works at harbors and rivers. Dredged sea soil contains various contaminants. Hence, prior to recycling the dredged sea soil, the various contaminants should be removed to prevent a secondary contamination due to the leaching of hazardous chemicals. Pretreated dredged sea soil can be buried under the ground or used for land reclamation. In this study, however, pretreated dredged sea soil was used to investigate the level of pozzolanic activity. The properties of pretreated dredged sea soil were investigated, the method for heat treatment was determined, and the compressive strength of mortar using dredged sea soil was examined. According to the XRF result, the main components of dredged sea soil were $SiO_2$ of over 55%, and $Al_2O_3$ and $SO_3$ of some amounts. Results from XRD and TG/DTA showed that pretreated dredged sea soil can be used as a pozzolanic material. When dredged sea soil was thermally treated for 90 min at $550^{\circ}C$, a compressive strength result was similar to that of control mortar.