• 제목/요약/키워드: 포아송 클러스터

검색결과 14건 처리시간 0.02초

모바일 애드 혹 네트워크에서 LTD(Load Tolerance Density-distribution)를 이용한 효율적인 분산경로에 관한 연구 (A Study of Efficiency Distributed routing path using LTD(Load Tolerance Density-distribution) in Mobile Ad-hoc Networks)

  • 오동근;오영준;이강환
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 춘계학술대회
    • /
    • pp.105-107
    • /
    • 2015
  • 본 논문에서는 네트워크의 유동확률밀도를 이용하여 분산적인 라우팅 경로를 분석하는 LTD(Load Tolerance Density-distribution) 알고리즘을 제안한다. 모바일 애드 혹 네트워크(Mobile Ad-hoc Networks)는 유동성을 가진 노드들로 구성된 네트워크로서, 토폴로지의 변화가 빈번하다. 토폴로지의 변화를 줄이기 위해 계층적 네트워크가 연구되었으나, 특정 클러스터 헤드노드에게 부하가 집중되어 통신이 단절된다. 본 논문에서 제안하는 알고리즘은 포아송 분포를 이용한 노드의 유동확률밀도를 계산하여, 분산적인 라우팅 경로를 제공하는 알고리즘이다. 모의실험에서, 본 논문에서 제안한 알고리즘의 패킷 전송률은 비교 알고리즘에 비해 향상된 결과를 보여주었다.

  • PDF

연간 강우 변동성을 고려한 혼합 추계 강우 생성 모형의 개발 (Development of hybrid stochastic model for rainfall generation considering rainfall inter-annual variability)

  • 박정하;김동균
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.11-11
    • /
    • 2018
  • 본 연구에서는 1시간부터 1년 단위의 강우 특성들을 잘 모의하는 혼합 추계 강우 생성 모형을 개발하였다. 본 모형의 가상 강우 생성 과정은 4단계로 이루어진다. 첫 단계에서 Seasonal ARIMA 모형을 통하여 시계열 특성을 반영한 월 강우를 생성한다. 두 번째 단계는 생성된 월 강우에 해당하는 일 단위 이하의 강우 통계치 세트를 생성하는 것이며, 통계치간 상관관계를 통해 평균, 표준편차, 자기상관 계수, 무강우 확률을 생성한다. 생성된 통계치 세트는 세 번째 단계에서 Modified Bartlett-Lewis Rectangular Pulse (MBLRP) 모형의 6개의 매개변수를 보정하는데 사용되며, 마지막으로 MBLRP 매개변수 세트를 통해 가상 강우 시계열을 생성한다. 위 모형을 통해 미국 동부 지역 29개 강우 관측소에 대하여 200년 길이의 가상 강우를 생성하였으며, 그 결과 시 단위부터 연 단위까지 강우의 1차, 2차 통계치 및 무강우 확률을 성공적으로 재현하였다. 또한 기존 MBLRP 모형에 비하여 극한 강우 사상을 재현하는 능력이 향상되었다. 빈도분석 결과를 통하여 MBLRP 모형이 재현기간에 따라 10%에서부터 40%까지 극한 사상을 과소 추정한 반면, 본 모형에서는 20% 이내의 값을 나타내었다.

  • PDF

Bayesian MBLRP 모형을 이용한 시간강수량 모의 기법 개발 (A Development of Hourly Rainfall Simulation Technique Based on Bayesian MBLRP Model)

  • 김장경;권현한;김동균
    • 대한토목학회논문집
    • /
    • 제34권3호
    • /
    • pp.821-831
    • /
    • 2014
  • 추계학적 강수발생 및 모의기법은 수문학적 모형의 입력 자료로써 널리 이용되고 있다. 그러나 Modified Bartlett-Lewis Rectangular Pulse(MBLRP)와 같은 추계학적 포아송 클러스터 강수생성 모형에 대해서 국부최적화 방법을 통한 매개변수 추정 방법은 매개변수의 신뢰성에 상당한 영향을 주는 것으로 알려져 있다. 최근에는 MBLRP 모형의 국부해추정 문제를 해소하기 위하여 Particle Swarm Optimization (PSO) 또는 Shuffled Complex Evolution developed at The University of Arizona (SCE-UA) 등 매개변수 추정 성능이 우수한 전역최적화기법이 도입되고 있지만, 제한된 매개변수 공간에서 항상 신뢰성 있는 매개변수 추정이 가능한 것은 아니다. 뿐만 아니라, 모형의 매개변수들이 갖고 있는 불확실성에 관한 연구는 아직 충분히 논의되지 않았다. 이러한 관점에서 본 연구는 Bayesian 기법과 연계한 MBLRP 모형을 개발하였으며 각 매개변수들의 사후분포(Posterior Distribution)를 유도하여 매개변수가 내포하는 불확실성을 정량적으로 평가하였다. 그 결과 관측값에 대한 시간단위 이하 강수발생 통계치를 효과적으로 복원하고 있음을 확인할 수 있었다.

대구광역시 교통약자 보행자 교통사고 공간 군집 분석 (Spatial clustering of pedestrian traffic accidents in Daegu)

  • 황영은;박성희;최화빈;윤상후
    • 디지털융복합연구
    • /
    • 제20권3호
    • /
    • pp.75-83
    • /
    • 2022
  • OECD 국가 중 보행자 사망 비율이 가장 높은 대한민국은 보행자 중심으로 법령이 제정하면서 안전한 보행환경 개선을 위해 노력하고 있다. 이 연구는 노인 인구와 학원이 밀도가 높은 대구광역시를 대상으로 보행자 교통사고 클러스터를 포아송분포를 이용한 스캔통계량으로 파악하고자 한다. 어린이와 노인에 관한 교통사고의 대중 인식을 수집하여 워드클라우드로 살펴본 결과 어린이는 정부와 기업인의 캠페인을 중심으로 노출되고 있고, 노인은 사고감소를 위한 정책연구를 중심으로 노출되고 있었다. 어린이 보행자 교통사고의 상대적 위험성은 공단이 많은 평리·내당·용산동에서 높았고, 학원 밀집도가 높은 만촌·봉무·범어동에서 낮았다. 노인 보행자 교통사고의 상대적 위험성은 도심에 가까운 용산·죽전·두류·내당동에서 높았고, 범어·삼덕·팔공·봉무동에서 낮았다. 대구광역시 내당동과 용산동은 어린이와 노인 보행사고 위험성이 높아 보행 안전 취약지역으로 파악되었다. 이는 스캔통계량이 교통사고 위험 지역 탐색에 효과적임을 의미한다.