• Title/Summary/Keyword: 포물선 방정식

Search Result 82, Processing Time 0.021 seconds

Effects of Warm Eddy on Long-range Sound Propagation in the East Sea (동해에서 난수성 소용돌이의 원거리 음파전달에 미치는 영향)

  • Kim, Won-Ki;Cho, Chang-bong;Park, Joung-Soo;Hahan, Jooyoung;Na, Youngnam
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.6
    • /
    • pp.455-462
    • /
    • 2015
  • It is well known that warm eddy is frequently developed through the year in the East Sea. The warm eddy may affect sound propagation due to changes of sound velocity structures in the sea water. To verify the effects of the warm eddy for long-range sound propagation, transmission loss and performance surface, which were used mean direct signal excess range generated by sound propagation modeling using re-analyzed climatology data on March 23th in 2007 were analysed. From these analyses, we found that characteristics of sound propagation in the sea water are changed by the warm eddy, and boundaries of the warm eddy act as a barrier for long-range sound propagation. Furthermore, these disadvantages of the eddy related to sound propagation were increased when the sea bottom depth is shallow.

Non-Dyadic Lens Distortion Correction and Image Enhancement Based on Local Self-Similarity (자기 예제 참조기반 단계적 어안렌즈 영상보정을 통한 주변부 열화 제거)

  • Park, Jinho;Kim, Donggyun;Kim, Daehee;Kim, Chulhyun;Paik, Joonki
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.10
    • /
    • pp.147-153
    • /
    • 2014
  • In this paper, we present a non-dyadic lens distortion correction model and image restoration method based on local self-similarity to remove jagging and blurring artifacts in the peripheral region of the geometrically corrected image. The proposed method can be applied in various application areas including vehicle real-view cameras, visual surveillance systems, and medical imaging systems.

Effects of Depth-varying Compressional Wave Attenuation on Sound Propagation on a Sandy Bottom in Shallow Water (천해 사질 퇴적층에서 종파감쇠계수의 깊이별 변화가 음파손실에 미치는 영향)

  • Na, Young-Nam;Shim, Tae-Bo;Jurng, Moon-Sub;Choi, Jin-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.2E
    • /
    • pp.76-82
    • /
    • 1994
  • The characteristics of bottom sediment may be able to vary within a few meters of depth in shallow water. Since bottom attenuation coefficient as well as sound velocity in the bottom layer is determined by the composition and characteristics of sediment itself, it is reasonable to assume that the bottom attenuation coefficient is accordingly variable with depth. In this study, we use a parabolic equation scheme to examine the effects of depth-varying compressional wave attenuation on acoustic wave propagation in the low frequency ranging from 100 to 805 Hz. The sea floor under consideration is sandy bottom where the water and the sediment depths are 40 meters and 10 meters, respectively. Depending on the assumption that attenuation coefficient is constant or depth-varying, the propagation loss difference is as large as 10dB within 15 km. The predicted propagation loss is very much comparable to the measured one when we employ a depth-varying attenuation coefficient.

  • PDF

Estimation of a transition point of sound propagation condition using transmission loss data measured in SAVEX15 (SAVEX15 실험 해역에서 측정된 전달손실 자료를 이용한 음파 전달 조건의 변환점 추정)

  • Kwon, Hyuckjong;Choi, Jee Woong;Kim, Byoung-Nam
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • Sound propagation in shallow water changes from spherical spreading to cylindrical spreading, depending on boundary conditions, and this point is defined as a transition point of the sound propagation condition. Theoretically, the transition point can be estimated using the transmission loss as a function of source-receiver range. In this paper, the transmission loss curve in a Pekeris waveguide is predicted using a parabolic-equation based acoustic propagation model and using this transmission loss curve, the range from the source of the transition point is estimated, which is compared to the critical distance calculated using the sound speed ratio of water to sediment. In addition, the effects of the sound speed profile and source depth change on the transition point are investigated. Finally, the transition point is estimated using the transmission loss data measured during the period of the SAVEX15 (Shallow Water Acoustic Variability EXperiment 2015) conducted 65 km southwest of Jeju Island in May 2015, and it is compared to the ocean environmental parameters to understand the properties of sound propagation in the experimental area.

Advanced analysis and optimal design of space steel frames accounting for nonlinear behavior of connections (접합부의 비선형 거동을 고려한 공간 강뼈대 구조물의 고등해석과 최적설계)

  • Choi, Se Hyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.683-694
    • /
    • 2004
  • Advanced analysis and optimal design of semi-rigid space steel frames were presented. The advanced analysis can predict the combined nonlinear effects of connection, geometry, and material on the behavior and strength of semi-rigid frames. The Kishi-Chen power model was used to describe the nonlinear behavior of semi-rigid connections. Geometric nonlinearity was determined using stability functions. Material nonlinearity was determined using the Column Research Council (CRC) tangent modulus and the parabolic function. The direct search method proposed by Choi and Kim was used as optimization technique. One by one, the member with the largest unit value evaluated using the LRFD interaction equation were placed adjacent to a larger member selected from the database. The objective function was assumed to be the weight of steel frame, while the constraint functions were load-carrying capacities, deflections, inter-story drifts, and the ductility requirements. The member sizes determined using the proposed method were compared to those derived from the conventional LRFD method.

Development of Optimum Design Program for PPC Structures using DCOC (이산성 연속형 최적성 규준을 이용한 PPC 구조의 최적설계프로그램 개발)

  • 한상훈;조홍동;이상근
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.315-325
    • /
    • 1997
  • This paper describes the application of discretized continuum-type optimality criteria (DCOC) and the development of optimum design program for the multispan partially prestressed concrete beams. The cost of construction as objective function which includes the costs of concrete, prestressing steel, non-prestressing steel and formwork is minimized. The design constraints include limits on the maximum deflection, flexural and shear strengths, in addition to ductility requirements, and upper and lower bounds on design variables as stipulated by the design Code. Based on Kuhn-Tucker necessary conditions, the optimality criteria are explicitly derived in terms of the design variables-effective depth, eccentricity of prestressing steel and non-prestressing steel ratio. The prestressing profile is prescribed by parabolic functions. The self-weight of the structure is included in the equilibrium equation of the real system, as is the secondary effect resulting from the prestressing force. An iterative procedure and computer program for updating the design variables are developed. Two numerical examples of multispan PPC beams with rectangular cross-section are solved to show the applicability and efficiency of the DCOC-based technique.

  • PDF

Advanced analysis and optimal design of steel frames accounting for nonlinear behavior of connections (접합부의 비선형 거동을 고려한 강뼈대 구조물의 고등해석과 최적설계)

  • Choi, Se Hyu;Park, Moon Ho;Song, Jae Ho;Lim, Cheong Kweon
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.6 s.67
    • /
    • pp.661-672
    • /
    • 2003
  • The advanced analysis and optimal design of semi-rigid frame were presented. Advanced analysis can predict the combined nonlinear effects of connection, geometry, and material on the behavior and strength of semi-rigid frames. The Kishi-Chen power model was used to describe the nonlinear behavior of semi-rigid connections. Geometric nonlinearity was determined using stability functions. On the other hand, material nonlinearity was determined using the Column Research Council (CRC) tangent modulus and parabolic function. The direct search method proposed by Choi and Kim was used as optimization technique. The member with the largest unit value evaluated using the LRFD interaction equation was replaced one by one with an adjacent larger member selected from the database. The objective function was assumed as the weight of steel frame, with the constraint functions accounting for load-carrying capacities, deflections. inter-story drifts, and ductility requirement. Member sizes determined by the proposed method were compared with those derived using the conventional LRFD method.

The Modeling and Simulation for Pseudospectral Time-Domain Method Synthetic Environment Underwater Acoustics Channel applied to Underwater Environment Noise Model (수중 환경 소음 모델이 적용된 의사 스펙트럼 시간영역 법 합성환경 수중음향채널 모델링 및 시뮬레이션)

  • Kim, Jang-Eun;Kim, Dong-Gil;Han, Dong-Seog
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.3
    • /
    • pp.15-28
    • /
    • 2016
  • It is necessary to analyze underwater acoustics channel(UAC) modeling and simulation for underwater weapon system development and acquisition. In order to analyze UAC, there are underwater acoustics propagation numerical analysis models(Ray theory, Parabolic equation, Normal-mode, Wavenumber integration). However, If these models are used for multiple frequency signal analysis, they are inaccurate to calculate result of analysis effectiveness and restricted for signal processing and analysis. In this paper, to overcome this problem, we propose simple/multiple frequency signal analysis model of the Pseudospectral Time-Domain Method synthetic environment UAC applied to underwater environment noise model as like as realistic underwater environment. In order to confirm the validation of the model, we performed the 9 scenarios simulation(4 scenarios of single frequency signal, 4 scenarios of multiple frequency signal, 1 scenario of single/multiple frequency signal like submarine radiated noise) for validation and confirmed the validation of this model through the simulation model.

Coastal upwelling observed off the East coast of Korea and variability of passive sound detection environment (동해 연안에서 관측된 용승현상과 수동 음탐환경의 변화)

  • Sang-Shin, Byun;Chang-Bong, Cho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.601-609
    • /
    • 2022
  • In August 2007, coastal upwelling occurred off the east coast of Korea, and vertical water temperature and salinity data were obtained from a real-time surface ocean buoy. Based on the time series observation data, a vertical sound velocity structure was calculated before, during, and after the occurrence of the coastal upwelling, and how the coastal upwelling affects the sound propagation and detection environment through acoustic modeling considering the horizontal scale and actual seabed topography. As a result of comparing and analyzing the low-frequency (500 Hz) sound transmission loss and the target detection range by depth using the parabolic equation model, it was analyzed that if coastal upwelling occurs, a detection gain of up to about 10 dB can be expected. In addition, through this study, it was confirmed that the characteristics of sound propagation can be greatly changed even in a short period of about 2 to 3 days before and after coastal upwelling.

Determination of the Critical Buckling Loads of Shallow Arches Using Nonlinear Analysis of Motion (비선형 운동해석에 의한 낮은 아치의 동적 임계좌굴하중의 결정)

  • Kim, Yun Tae;Huh, Taik Nyung;Kim, Moon Kyum;Hwang, Hak Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.43-54
    • /
    • 1992
  • For shallow arches with large dynamic loading, linear analysis is no longer considered as practical and accurate. In this study, a method is presented for the dynamic analysis of shallow arches in which geometric nonlinearity must be considered. A program is developed for the analysis of the nonlinear dynamic behavior and for evaluation of critical buckling loads of shallow arches. Geometric nonlinearity is modeled using Lagrangian description of the motion. The finite element analysis procedure is used to solve the dynamic equation of motion and Newmark method is adopted in the approximation of time integration. A shallow arch subject to radial step loads is analyzed. The results are compared with those from other researches to verify the developed program. The behavior of arches is analyzed using the non-dimensional time, load, and shape parameters. It is shown that geometric nonlinearity should be considered in the analysis of shallow arches and probability of buckling failure is getting higher as arches are getting shallower. It is confirmed that arches with the same shape parameter have the same deflection ratio at the same time parameter when arches are loaded with the same parametric load. In addition, it is proved that buckling of arches with the same shape parameter occurs at the same load parameter. Circular arches, which are under a single or uniform normal load, are analyzed for comparison. A parabolic arch with radial step load is also analyzed. It is verified that the developed program is applicable for those problems.

  • PDF