• Title/Summary/Keyword: 포름알데히드 제거

Search Result 43, Processing Time 0.029 seconds

Adsorption of Formaldehyde by Wood Charcoal-Based Building Materials (목탄계 건축자재에 의한 포름알데히드 흡착)

  • Lee, Oh-Kyu;Choi, Joon-Weon;Jo, Tae-Su;Paik, Ki-Hyon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.61-69
    • /
    • 2007
  • The building materials used for improving indoor air quality, the wood charcoal mixed with cement mortar or natural water paint were examined for their potential removing ability of formaldehyde. After the reaction of samples with formaldehyde in the glass flasks designed in our lab, the remaining formaldehyde was collected using DNPH (2,4-dinitrophenyl hydrazine) cartridges, and their concentration was determined using HPLC. From the results, it was found that the removing amount of formaldehyde per one gram sample containing 5, 10, or 15% of wood charcoal was more than three times compared to that of control (100% cement mortar or water paint). Their elimination percentages from the initial formaldehyde was about 80~90%. The experimental results for wood charcoal-water paint showed a similar trend with those of wood charcoal-cement mortar samples. Their elimination percentages from the initial formaldehyde was about 90%. It is proposed that formaldehyde is adsorbed on the adsorbed 'O' or 'OH' groups in the graphene layers formed through the re-arrangement of lignocellulose in the wood during the carbonization procedure.

Experimental Study on Formaldehyde Removal of Concrete by Using Activated Carbon and Functional Catalyst Materials (활성탄 및 기능성 촉매제를 이용한 콘크리트의 포름알데히드 제거에 관한 실험적 연구)

  • Yoon, Ki-Won;Lee, Joo-Hun;Choi, Myung-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.729-732
    • /
    • 2008
  • Recently the attention against the indoor air quality that could affect health and comfort of building becomes intensively, the efforts for a problem solving is advanced with many sidedness. The research which it mixes the activated carbon and the functional catalyst materials that will be able to dissolve foul air absorbed by activated carbon in concrete with application technique of existing differently examined the basic physical properties and the removal ratio of formaldehyde so that it analyzed the effect of air purge. The test results in addition quantity increase of the activated carbon the slump showed the tendency which it decreased and the compressive strength appeared with no much difference. The test result removal ratio of formaldehyde was measured until the maximum 80%.

  • PDF

Comparative Study on the Control and Removal of Formaldehyde for the Urea-formaldehyde Resin Bonded Plywood -Adhesive control- (요소수지접착합판(尿素樹脂接着合板)의 유리(遊離)포름알데히드 방산(放散)제거 및 조절방법에 대한 비교연구(比較硏究))

  • Lee, Hwa-Hyoung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.16-23
    • /
    • 1981
  • This study has been carried out to make a comparative study for the adhesive control methods specifically developed for application to formaldehyde. The method for formaldehyde determination used in this report is the improved chromo tropic acid determination. The results are summarized as follows: 1. The soaking treatment in aqueous solution of urea wok the most scavenging effect on the formaldehyde release from a plywood sample glued with a urea formaldehyde adhesive, and other removal treatment such as resorcinol, albumine-, and hardener-treatment gave significant reduction too. 2. In glue shear strength of dry test, 2% of resorcinol treatment and soaking treatment showed the highest strength and all the other treatment met the standard, but in hot water soaking test, 2% of resorcinol treatment gave the best results, on the other hand, adding the hardener showed the lowest strength and failed in meeting the standard. 3. Air dried moisture content of all treated plywood met the standard which calls for 13% or bellow. 4. In this comparative study, we can make a strong combination each other or go into the details of one treatment for the best result through the more study.

  • PDF

Removals of Formaldehyde by Silver Nano Particles Attached on the Surface of Activated Carbon (나노 은입자가 첨착된 활성탄의 포름알데히드 제거특성)

  • Shin, Seung-Kyu;Kang, Jeong-Hee;Song, Ji-Hyeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.10
    • /
    • pp.936-941
    • /
    • 2010
  • This study was conducted to investigate formaldehyde removals by silver nano-particles attached on the surface of granular activated carbon (Ag-AC) and to compare the results to those obtained with ordinary activated carbon (AC). The BET analysis showed that the overall surface area and the fraction of micropores (less than $20{\AA}$ diameter) of the Ag-AC were significantly decreased because the silver particles blocked the small pores on the surface of the Ag-AC. The formaldehyde removal capacity of the Ag-AC determined using the Freundlich isotherm was higher than that of AC. Despite the decreased BET surface area and micropore volume, the Ag-AC had the increased removal capacity for formaldehyde, presumably due to catalytic oxidation by silver nano-particles. In contrast, the adsorption intensity of the Ag-AC, estimated by 1/n in the Freundlich isotherm equation, was similar to that of the ordinary AC, indicating that the surface modification using silver nano-particles did not affect the adsorption characteristics of AC. In a column experiment, the Ag-AC also showed a longer breakthrough time than that of the AC. Simulation results using the homogeneous surface diffusion model (HSDM) were well fitted to the breakthrough curve of formaldehyde for the ordinary AC, but the predictions showed substantial deviations from the experimental data for the Ag-AC. The discrepancy was due to the catalytic oxidation of silver nano-particles that was not incorporated in the HSDM. Consequently, a new numerical model that takes the catalytic oxidation into accounts needs to be developed to predict the combined oxidation and adsorption process more accurately.

Effect of Activated Carbon and Diatomite on Deodorant Efficiency of Recycled Fly Ash Panel (중유회 탈취패널에 있어서 활성탄과 규조토의 탈취성능 영향평가)

  • Kim, Min-Ho;Kim, Young-Kyu;Han, Kenneth N.;Kim, Se-Jung;Kim, Nam-Soo;Hong, Seong-Yeup;Han, Hyea-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.6
    • /
    • pp.625-630
    • /
    • 2010
  • This study aims to examine the possible use of heavy oil fly ash as raw material for deodorization panels by adding additives such as activated carbon and diatomite during deodorization panel manufacturing process and improving the performance of formaldehyde and toluene elimination.The recycled heavy oil flyash deodorization panel to be used either of them as additives removed more than 93% of formaldehyde and more than 97% of toluen but the compressive strength was decreased 27 to 63%. In an experiment to be used both additives, Whereas, the panel to include activated carbon 5% and diatomite 5% removed 84% against formaldehyde and 96% against toluen, and the compressive strength was increased 32% better than standard panel. Therefore it could be confirmed that the recycled heavy oil flyash deodorization panel is increased the compressive strength and the removal efficiency against harmful chemical substances by using the additives mixture.

Degradation of Formaldehyde in Indoor Air Quality by $TiO_2$ Sol Coated Wall Paper ($TiO_2$ 광촉매 졸(Sol)의 벽지코팅에 의한 실내공기질에서의 포름알데히드 분해)

  • An, Sang-Woo;Cho, Il-Hyoung;Park, Jae-Hong;Chang, Soon-Woong;Kim, Young-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.8
    • /
    • pp.872-877
    • /
    • 2006
  • It has been concerned about the indoor air contaminants because of the hours spend in indoor space. These contaminants are emitted from various indoor facilities. Therefore, even though there concentrations are very low, adverse effects can't be ignored. However, treatment technologies are insufficient to deal with these contaminants. For this reason, the objective of this study was to investigate the feasibility of artificial ultraviolet(UV) detoxification using $TiO_2$ system for degrading formaldehyde contaminated indoor air. The experiment was also performed to investigate the formaldehyde removal effect of fluorescence lamp as an alternative UV light source because it is used in indoor as a light source. The results presented demonstrated that as the $TiO_2$ dosage is more and the reaction area is wider, the photocatalytic degradation rate does more enhanced. Degradation of TCE was more rapid used in $UV_{254}$ lamp than in fluorescence lamp. However, if it is operated during enough time, it will be able to remove the considerable quantity of TCE in case of using fluorescence lamp.

A Study on the Optimization of Process Operation & Catalyst Preparing for Commercialization of Formaldehyde Room Temperature Oxidation Catalyst (포름알데히드 상온산화 촉매의 상용화를 위한 촉매 제조 및 공정 운전조건 최적화 연구)

  • Lee, Sanghyun;Park, Inchul;Kim, Sungsu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.10
    • /
    • pp.5-11
    • /
    • 2016
  • In this study, the factors affecting commercialization of $Pt/TiO_2$ catalyst, which can oxidize HCHO at room temperature, was investigated. In order to determine the optimum noble metal loading, the catalytic activity was evaluated by varying the Pt loadings; the best catalytic activity was achieved for 1 wt% of Pt. In addition, the catalyst prepared under the reduction condition showed an excellent HCHO oxidation conversion at room temperature. Based on these results, it was confirmed that the activity could be changed by oxidation state of active metal, and in case of Pt, metallic Pt ($Pt^0$) species was more active on HCHO oxidation at room temperature. As a result of evaluating an effect of space velocity to determine the optimum operating condition, it was found that in the lower space velocity, conversion rate of HCHO was increased due to increase of catalyst bed. Catalytic activity was greater in the presence of moisture than in its absence. Through above results, the key factors for commercialization of oxidation catalyst, which was operated at room temperature even without any additional energy source was confirmed.

Concentration distribution of aldehydes in various indoor microenvironments (다양한 실내 구역에서의 알데히드류의 농도 분포)

  • 이지호;박성은;신동천
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.439-440
    • /
    • 2000
  • 알데히드류는 실내의 다양한 오염원에서 발생되어 하루의 대부분을 실내에서 보내고 있는 현대인들에게 건강상 영향을 미치는 것으로 알려져 관심의 대상이 되어왔으며, 특히, 포름알데히드는 발암성 물질로 알려진 대표적인 실내 환경 오염 물질이기도 하다(Zhang junfeng et al., 1999). 포름알데히드는 urea 또는 phenol-formaldehyde 수지를 합성하는 주요 물질이며, 건축물 단열재, 가구의 염료 및 광택제, 접착제, 합판, particle board, 악취 제거제, 제지, 가스 스토브, 담배연기, 화장용품, 세제등 생활 용품에서 공업용품에 이르기까지 광범위하게 사용되며, 그 사용량도 증가되고 있다(Thomas J. Kelly et al., 1999). (중략)

  • PDF

Scavenging Effect of Injurious VOC from Flooring using Green Tea Leaves Powder (녹차잎분말을 이용한 마루판의 유해 TVOC 제거효과)

  • Kang, Seog Goo;Lee, Hwa Hyoung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.49-58
    • /
    • 2008
  • This research was carried out to use green tea leaves powder for scavenging effects of volatile organic compounds on the UV varnishes and adhesives of fancy cherry veneer overlaid on the PF resin bonded Meranti plywood. The results are as follows: 1) Green tea leaves contained 9.85% of polyphenol compounds. 2) FT-IR results showed green tea leaves had effects to react with benzaldehyde and ethyl hexyl alcohol to form a chemical bond. 3) 2.5% of green tea leaves powder content was proper for scavenging effect on the UV varnishes and adhesives of fancy veneer overlaid on the PF resin bonded plywood 4) 20 liters small chamber test indicated excellent emission speed results such as $0.089mg/m^2hr$ of TVOC and $0.001mg/m^2hr$ of HCHO (on 7th day), as compared with standard (less than $0.1mg/m^2hr$ of TVOC and $0.015mg/m^2hr$ of HCHO emission are the excellent grade).

함수특성을 이용한 실내공기 정화(포름알데히드 제거)용 마감재

  • 김병곤;박종력;전호석;이재장;장동수;강병철;최정진
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2004.05a
    • /
    • pp.372-374
    • /
    • 2004
  • 최근들어 비금속광물의 구조적 특성을 이용한 활용분야가 매우 다양해지고 있다. 특히 판상광물은 차폐(은폐)력이 매우 우수하고, 층간특성을 이용한 흡착 및 저장특성이 매우 우수하다. 본 연구에서는 이와 같은 판상광물의 기본의 특성에 또 다른 기능성 물질을 흡착시킴으로써 부가적인 새로운 기능성을 갖는 친환경성 건축소재를 개발하고자 천연산 인상흑연 및 견운모를 기능성 모소재로 사용하고 미립화 및 표면 환경기능화를 위하여 BMK로 흑연입자 표면을 기능화하였다. 제조된 기능성 마감재인 닥터하우스를 모르타르에 도포하여 다양한 기능성을 측정한 결과 78% 이상의 유해가스(포름알데히드) 정화제거효과 및 99.9% 이상의 항균, 항곰팡이 효과를 갖는 것으로 나타났다.

  • PDF