• Title/Summary/Keyword: 포그컴퓨팅

Search Result 32, Processing Time 0.021 seconds

An Optimal Container Deployment Policy in Fog Computing Environments (Fog Computing 환경에서의 최적화된 컨테이너 배포 정책)

  • Jin, Sunggeun;Chun, In-Geol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.26 no.3
    • /
    • pp.1-7
    • /
    • 2021
  • Appropriate containers are deployed to cope with new request arrivals at Fog Computing (FC) hosts. In the case, we can consider two scenarios: (1) the requests may be queued until sufficient resources are prepared for the container deployments; (2) FC hosts may transfer arrived service requests to nearby FC hosts when they cannot accommodate new container deployments due to their limited or insufficient resources. Herein, for more employed neighboring FC hosts, arrived service requests may experience shorter waiting time in container deployment queue of each FC host. In contrast, they may take longer transfer time to pass through increased number of FC hosts. For this reason, there exists a trade-off relationship in the container deployment time depending on the number of employed FC hosts accommodating service request arrivals. Consequently, we numerically analyze the trade-off relationship to employ optimal number of neighboring FC hosts.

Requirement Analysis for Agricultural Meteorology Information Service Systems based on the Fourth Industrial Revolution Technologies (4차 산업혁명 기술에 기반한 농업 기상 정보 시스템의 요구도 분석)

  • Kim, Kwang Soo;Yoo, Byoung Hyun;Hyun, Shinwoo;Kang, DaeGyoon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.175-186
    • /
    • 2019
  • Efforts have been made to introduce the climate smart agriculture (CSA) for adaptation to future climate conditions, which would require collection and management of site specific meteorological data. The objectives of this study were to identify requirements for construction of agricultural meteorology information service system (AMISS) using technologies that lead to the fourth industrial revolution, e.g., internet of things (IoT), artificial intelligence, and cloud computing. The IoT sensors that require low cost and low operating current would be useful to organize wireless sensor network (WSN) for collection and analysis of weather measurement data, which would help assessment of productivity for an agricultural ecosystem. It would be recommended to extend the spatial extent of the WSN to a rural community, which would benefit a greater number of farms. It is preferred to create the big data for agricultural meteorology in order to produce and evaluate the site specific data in rural areas. The digital climate map can be improved using artificial intelligence such as deep neural networks. Furthermore, cloud computing and fog computing would help reduce costs and enhance the user experience of the AMISS. In addition, it would be advantageous to combine environmental data and farm management data, e.g., price data for the produce of interest. It would also be needed to develop a mobile application whose user interface could meet the needs of stakeholders. These fourth industrial revolution technologies would facilitate the development of the AMISS and wide application of the CSA.